1887

Abstract

The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium , the causative agent of plague. When overexpressed this protein is able to downregulate IL-1β- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055012-0
2012-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1593.html?itemId=/content/journal/micro/10.1099/mic.0.055012-0&mimeType=html&fmt=ahah

References

  1. Airhart C. L. , Rohde H. N. , Bohach G. A. , Hovde C. J. , Deobald C. F. , Lee S. S. , Minnich S. A. . ( 2008; ). Induction of innate immunity by lipid A mimetics increases survival from pneumonic plague. . Microbiology 154:, 2131–2138. [CrossRef] [PubMed]
    [Google Scholar]
  2. Balada-Llasat J. M. , Mecsas J. . ( 2006; ). Yersinia has a tropism for B and T cell zones of lymph nodes that is independent of the type III secretion system. . PLoS Pathog 2:, e86. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beck G. , Puchelle E. , Plotkowski C. , Peslin R. . ( 1988; ). Effect of growth on surface charge and hydrophobicity of Staphylococcus aureus . . Ann Inst Pasteur Microbiol 139:, 655–664. [CrossRef] [PubMed]
    [Google Scholar]
  4. Buchrieser C. , Prentice M. , Carniel E. . ( 1998; ). The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. . J Bacteriol 180:, 2321–2329.[PubMed]
    [Google Scholar]
  5. Cirl C. , Wieser A. , Yadav M. , Duerr S. , Schubert S. , Fischer H. , Stappert D. , Wantia N. , Rodriguez N. et al. ( 2008; ). Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. . Nat Med 14:, 399–406. [CrossRef] [PubMed]
    [Google Scholar]
  6. Datsenko K. A. , Wanner B. L. . ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  7. Deng W. , Burland V. , Plunkett G. III , Boutin A. , Mayhew G. F. , Liss P. , Perna N. T. , Rose D. J. , Mau B. et al. ( 2002; ). Genome sequence of Yersinia pestis KIM. . J Bacteriol 184:, 4601–4611. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felek S. , Muszyński A. , Carlson R. W. , Tsang T. M. , Hinnebusch B. J. , Krukonis E. S. . ( 2010; ). Phosphoglucomutase of Yersinia pestis is required for autoaggregation and polymyxin B resistance. . Infect Immun 78:, 1163–1175. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gay N. J. , Keith F. J. . ( 1991; ). Drosophila Toll and IL-1 receptor. . Nature 351:, 355–356. [CrossRef] [PubMed]
    [Google Scholar]
  10. Han Y. , Zhou D. , Pang X. , Zhang L. , Song Y. , Tong Z. , Bao J. , Dai E. , Wang J. et al. ( 2005; ). Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress. . Res Microbiol 156:, 403–415. [CrossRef] [PubMed]
    [Google Scholar]
  11. Han Y. , Qiu J. , Guo Z. , Gao H. , Song Y. , Zhou D. , Yang R. . ( 2007; ). Comparative transcriptomics in Yersinia pestis: a global view of environmental modulation of gene expression. . BMC Microbiol 7:, 96. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hinnebusch B. J. . ( 2005; ). The evolution of flea-borne transmission in Yersinia pestis . . Curr Issues Mol Biol 7:, 197–212.[PubMed]
    [Google Scholar]
  13. Huth J. R. , Bewley C. A. , Clore G. M. , Gronenborn A. M. , Jackson B. M. , Hinnebusch A. G. . ( 1997; ). Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. . Protein Sci 6:, 2359–2364. [CrossRef] [PubMed]
    [Google Scholar]
  14. Latz E. , Verma A. , Visintin A. , Gong M. , Sirois C. M. , Klein D. C. , Monks B. G. , McKnight C. J. , Lamphier M. S. et al. ( 2007; ). Ligand-induced conformational changes allosterically activate Toll-like receptor 9. . Nat Immunol 8:, 772–779. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lemaître N. , Sebbane F. , Long D. , Hinnebusch B. J. . ( 2006; ). Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. . Infect Immun 74:, 5126–5131. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lukaszewski R. A. , Kenny D. J. , Taylor R. , Rees D. G. C. , Hartley M. G. , Oyston P. C. F. . ( 2005; ). Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. . Infect Immun 73:, 7142–7150. [CrossRef] [PubMed]
    [Google Scholar]
  17. Maxson M. E. , Darwin A. J. . ( 2004; ). Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses. . J Bacteriol 186:, 4199–4208. [CrossRef] [PubMed]
    [Google Scholar]
  18. Medzhitov R. , Preston-Hurlburt P. , Janeway C. A. Jr . ( 1997; ). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. . Nature 388:, 394–397. [CrossRef] [PubMed]
    [Google Scholar]
  19. Monie T. P. , Moncrieffe M. C. , Gay N. J. . ( 2009; ). Structure and regulation of cytoplasmic adapter proteins involved in innate immune signaling. . Immunol Rev 227:, 161–175. [PubMed] [CrossRef]
    [Google Scholar]
  20. Newman R. M. , Salunkhe P. , Godzik A. , Reed J. C. . ( 2006; ). Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. . Infect Immun 74:, 594–601. [CrossRef] [PubMed]
    [Google Scholar]
  21. Nyman T. , Stenmark P. , Flodin S. , Johansson I. , Hammarström M. , Nordlund P. . ( 2008; ). The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. . J Biol Chem 283:, 11861–11865. [PubMed] [CrossRef]
    [Google Scholar]
  22. O’Neill L. A. J. , Bowie A. G. . ( 2007; ). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. . Nat Rev Immunol 7:, 353–364. [CrossRef] [PubMed]
    [Google Scholar]
  23. Parkhill J. , Wren B. W. , Thomson N. R. , Titball R. W. , Holden M. T. G. , Prentice M. B. , Sebaihia M. , James K. D. , Churcher C. et al. ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. . Nature 413:, 523–527. [CrossRef] [PubMed]
    [Google Scholar]
  24. Perry R. D. , Fetherston J. D. . ( 1997; ). Yersinia pestis–etiologic agent of plague. . Clin Microbiol Rev 10:, 35–66.[PubMed]
    [Google Scholar]
  25. Poltorak A. , He X. , Smirnova I. , Liu M. Y. , Van Huffel C. , Du X. , Birdwell D. , Alejos E. , Silva M. et al. ( 1998; ). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. . Science 282:, 2085–2088. [CrossRef] [PubMed]
    [Google Scholar]
  26. Radhakrishnan G. K. , Yu Q. , Harms J. S. , Splitter G. A. . ( 2009; ). Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. . J Biol Chem 284:, 9892–9898. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rana R. R. , Simpson P. , Zhang M. , Jennions M. , Ukegbu C. , Spear A. M. , Alguel Y. , Matthews S. J. , Atkins H. S. , Byrne B. . ( 2011; ). Yersinia pestis TIR-domain protein forms dimers that interact with the human adaptor protein MyD88. . Microb Pathog 51:, 89–95. [CrossRef] [PubMed]
    [Google Scholar]
  28. Reed L. J. , Muench H. . ( 1938; ). A simple method of estimating fifty per cent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  29. Robinson V. L. , Oyston P. C. , Titball R. W. . ( 2005; ). A dam mutant of Yersinia pestis is attenuated and induces protection against plague. . FEMS Microbiol Lett 252:, 251–256. [CrossRef] [PubMed]
    [Google Scholar]
  30. Rosenberg M. . ( 1984; ). Isolation of pigmented and nonpigmented mutants of Serratia marcescens with reduced cell surface hydrophobicity. . J Bacteriol 160:, 480–482.[PubMed]
    [Google Scholar]
  31. Salcedo S. P. , Marchesini M. I. , Lelouard H. , Fugier E. , Jolly G. , Balor S. , Muller A. , Lapaque N. , Demaria O. et al. ( 2008; ). Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. . PLoS Pathog 4:, e21. [CrossRef] [PubMed]
    [Google Scholar]
  32. Schubert S. R. , Rakin A. , Heesemann J. . ( 2004; ). The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. . Int J Med Microbiol 294:, 83–94. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sengupta D. , Koblansky A. , Gaines J. , Brown T. , West A. P. , Zhang D. , Nishikawa T. , Park S.-G. , Roop R. M. II , Ghosh S. . ( 2010; ). Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. . J Immunol 184:, 956–964. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sims J. E. , March C. J. , Cosman D. , Widmer M. B. , MacDonald H. R. , McMahan C. J. , Grubin C. E. , Wignall J. M. , Jackson J. L. et al. ( 1988; ). cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. . Science 241:, 585–589. [CrossRef] [PubMed]
    [Google Scholar]
  35. Spear A. M. , Loman N. J. , Atkins H. S. , Pallen M. J. . ( 2009; ). Microbial TIR domains: not necessarily agents of subversion?. Trends Microbiol 17:, 393–398. [CrossRef] [PubMed]
    [Google Scholar]
  36. Stubben C. J. , Duffield M. L. , Cooper I. A. , Ford D. C. , Gans J. D. , Karlyshev A. V. , Lingard B. , Oyston P. C. , de Rochefort A. et al. ( 2009; ). Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens. . BMC Genomics 10:, 501. [CrossRef] [PubMed]
    [Google Scholar]
  37. Taylor V. L. , Titball R. W. , Oyston P. C. . ( 2005; ). Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. . Microbiology 151:, 1919–1926. [CrossRef] [PubMed]
    [Google Scholar]
  38. Triantafilou M. , Gamper F. G. , Haston R. M. , Mouratis M. A. , Morath S. , Hartung T. , Triantafilou K. . ( 2006; ). Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. . J Biol Chem 281:, 31002–31011. [CrossRef] [PubMed]
    [Google Scholar]
  39. Xu Y. W. , Tao X. , Shen B. H. , Horng T. , Medzhitov R. , Manley J. L. , Tong L. . ( 2000; ). Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. . Nature 408:, 111–115. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yadav M. , Zhang J. , Fischer H. , Huang W. , Lutay N. , Cirl C. , Lum J. , Miethke T. , Svanborg C. . ( 2010; ). Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. . PLoS Pathog 6:, e1001120. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yoshida T. , Qin L. , Egger L. A. , Inouye M. . ( 2006; ). Transcription regulation of ompF and ompC by a single transcription factor, OmpR. . J Biol Chem 281:, 17114–17123. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zhou D. S. , Yang R. F. . ( 2009; ). Molecular Darwinian evolution of virulence in Yersinia pestis . . Infect Immun 77:, 2242–2250. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055012-0
Loading
/content/journal/micro/10.1099/mic.0.055012-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error