1887

Abstract

Shigatoxigenic (STEC) such as O157 are significant human pathogens, capable of producing severe, systemic disease outcomes. The more serious symptoms associated with STEC infection are primarily the result of Shiga toxin (Stx) production, directed by converting Stx bacteriophages. During phage-mediated replication and host cell lysis, the toxins are released en masse from the bacterial cells, and the severity of disease is linked inexorably to toxin load. It is common for a single bacterial host to harbour more than one heterogeneous Stx prophage, and it has also been recently proven that multiple isogenic prophage copies can exist in a single cell, contrary to the lambda immunity model. It is possible that in these multiple lysogens there is an increased potential for production of Stx. This study investigated the expression profiles of single and double isogenic lysogens of Stx phage ϕ24 using quantitative PCR to examine transcription levels, and a reporter gene construct as a proxy for the translation levels of transcripts. Toxin gene expression in double lysogens was in excess of the single lysogen counterpart, both in the prophage state and after induction of the lytic life cycle. In addition, double lysogens were found to be more sensitive to an increased induction stimulus than single lysogens, suggesting that maintenance of a stable prophage is less likely when multiple phage genome copies are present. Overall, these data demonstrate that the phenomenon of multiple lysogeny in STEC has the potential to impact upon disease pathology through increased toxin load.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054981-0
2012-02-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/488.html?itemId=/content/journal/micro/10.1099/mic.0.054981-0&mimeType=html&fmt=ahah

References

  1. Allison H. E.. ( 2007;). Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol2:165–174 [CrossRef][PubMed]
    [Google Scholar]
  2. Allison H. E., Sergeant M. J., James C. E., Saunders J. R., Smith D. L., Sharp R. J., Marks T. S., McCarthy A. J.. ( 2003;). Immunity profiles of wild-type and recombinant Shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens. Infect Immun71:3409–3418 [CrossRef][PubMed]
    [Google Scholar]
  3. Ashkenazi S., Cleary K. R., Pickering L. K., Murray B. E., Cleary T. G.. ( 1990;). The association of Shiga toxin and other cytotoxins with the neurologic manifestations of shigellosis. J Infect Dis161:961–965 [CrossRef][PubMed]
    [Google Scholar]
  4. Banatvala N., Debeukelaer M. M., Griffin P. M., Barrett T. J., Greene K. D., Green J. H., Wells J. G.. ( 1996;). Shiga-like toxin-producing Escherichia coli O111 and associated hemolytic-uremic syndrome: a family outbreak. Pediatr Infect Dis J15:1008–1011 [CrossRef][PubMed]
    [Google Scholar]
  5. Bielaszewska M., Prager R., Zhang W., Friedrich A. W., Mellmann A., Tschäpe H., Karch H.. ( 2006;). Chromosomal dynamism in progeny of outbreak-related sorbitol-fermenting enterohemorrhagic Escherichia coli O157 : NM. Appl Environ Microbiol72:1900–1909 [CrossRef][PubMed]
    [Google Scholar]
  6. Bielaszewska M., Prager R., Köck R., Mellmann A., Zhang W., Tschäpe H., Tarr P. I., Karch H.. ( 2007;). Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl Environ Microbiol73:3144–3150 [CrossRef][PubMed]
    [Google Scholar]
  7. Botstein D.. ( 1980;). A theory of modular evolution for bacteriophages. Ann N Y Acad Sci354:484–490 [CrossRef][PubMed]
    [Google Scholar]
  8. Brockmann R., Beyer A., Heinisch J. J., Wilhelm T.. ( 2007;). Posttranscriptional expression regulation: what determines translation rates?. PLOS Comput Biol3:e57 [CrossRef][PubMed]
    [Google Scholar]
  9. Brüssow H., Canchaya C., Hardt W. D.. ( 2004;). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev68:560–602 [CrossRef][PubMed]
    [Google Scholar]
  10. Cornick N. A., Jelacic S., Ciol M. A., Tarr P. I.. ( 2002;). Escherichia coli O157 : H7 infections: discordance between filterable fecal Shiga toxin and disease outcome. J Infect Dis186:57–63 [CrossRef][PubMed]
    [Google Scholar]
  11. Craig N. L., Roberts J. W.. ( 1980;). E. coli RecA protein-directed cleavage of phage λ repressor requires polynucleotide. Nature283:26–30 [CrossRef][PubMed]
    [Google Scholar]
  12. Díaz R., Vargas-Lagunas C., Villalobos M. A., Peralta H., Mora Y., Encarnación S., Girard L., Mora J.. ( 2011;). argC orthologs from Rhizobiales show diverse profiles of transcriptional efficiency and functionality in Sinorhizobium meliloti . J Bacteriol193:460–472 [CrossRef][PubMed]
    [Google Scholar]
  13. Eklund M., Leino K., Siitonen A.. ( 2002;). Clinical Escherichia coli strains carrying stx genes: stx variants and stx-positive virulence profiles. J Clin Microbiol40:4585–4593 [CrossRef][PubMed]
    [Google Scholar]
  14. Elliott E. J., Robins-Browne R. M., O’Loughlin E. V., Bennett-Wood V., Bourke J., Henning P., Hogg G. G., Knight J., Powell H., Redmond D.. Contributors to the Australian Paediatric Surveillance Unit ( 2001;). Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child85:125–131 [CrossRef][PubMed]
    [Google Scholar]
  15. Fogg P. C., Gossage S. M., Smith D. L., Saunders J. R., McCarthy A. J., Allison H. E.. ( 2007;). Identification of multiple integration sites for Stx-phage Φ24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor. Microbiology153:4098–4110 [CrossRef][PubMed]
    [Google Scholar]
  16. Fogg P. C. M., Allison H. E., Saunders J. R., McCarthy A. J.. ( 2010;). Bacteriophage lambda: a paradigm revisited. J Virol84:6876–6879 [CrossRef][PubMed]
    [Google Scholar]
  17. Fogg P. C. M., Rigden D. J., Saunders J. R., McCarthy A. J., Allison H. E.. ( 2011;). Characterization of the relationship between integrase, excisionase and antirepressor activities associated with a superinfecting Shiga toxin encoding bacteriophage. Nucleic Acids Res39:2116–2129 [CrossRef][PubMed]
    [Google Scholar]
  18. Gamage S. D., Patton A. K., Strasser J. E., Chalk C. L., Weiss A. A.. ( 2006;). Commensal bacteria influence Escherichia coli O157 : H7 persistence and Shiga toxin production in the mouse intestine. Infect Immun74:1977–1983 [CrossRef][PubMed]
    [Google Scholar]
  19. Görg A., Drews O., Weiss W.. ( 2006;). Extraction and solubilization of total protein from microorganisms. Cold Spring Harb Protoc2006:4224[CrossRef]
    [Google Scholar]
  20. Gyles C. L.. ( 2007;). Shiga toxin-producing Escherichia coli: an overview. J Anim Sci85:Suppl.E45–E62 [CrossRef][PubMed]
    [Google Scholar]
  21. Hayashi T., Makino K., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C. G., Ohtsubo E., Nakayama K.. & other authors ( 2001;). Complete genome sequence of enterohemorrhagic Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA Res8:11–22 [CrossRef][PubMed]
    [Google Scholar]
  22. Heddle J. G., Barnard F. M., Wentzell L. M., Maxwell A.. ( 2000;). The interaction of drugs with DNA gyrase: a model for the molecular basis of quinolone action. Nucleosides Nucleotides Nucleic Acids19:1249–1264 [CrossRef][PubMed]
    [Google Scholar]
  23. Herold S., Karch H., Schmidt H.. ( 2004;). Shiga toxin-encoding bacteriophages – genomes in motion. Int J Med Microbiol294:115–121 [CrossRef][PubMed]
    [Google Scholar]
  24. Herold S., Siebert J., Huber A., Schmidt H.. ( 2005;). Global expression of prophage genes in Escherichia coli O157 : H7 strain EDL933 in response to norfloxacin. Antimicrob Agents Chemother49:931–944 [CrossRef][PubMed]
    [Google Scholar]
  25. James C. E., Stanley K. N., Allison H. E., Flint H. J., Stewart C. S., Sharp R. J., Saunders J. R., McCarthy A. J.. ( 2001;). Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Appl Environ Microbiol67:4335–4337 [CrossRef][PubMed]
    [Google Scholar]
  26. Kaper J. B., Nataro J. P., Mobley H. L.. ( 2004;). Pathogenic Escherichia coli . Nat Rev Microbiol2:123–140 [CrossRef][PubMed]
    [Google Scholar]
  27. King A. J., Sundaram S., Cendoroglo M., Acheson D. W. K., Keusch G. T.. ( 1999;). Shiga toxin induces superoxide production in polymorphonuclear cells with subsequent impairment of phagocytosis and responsiveness to phorbol esters. J Infect Dis179:503–507[CrossRef]
    [Google Scholar]
  28. Lainhart W., Stolfa G., Koudelka G. B.. ( 2009;). Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. . J Bacteriol191:5116–5122[CrossRef]
    [Google Scholar]
  29. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  30. Loś J. M., Loś M., Wegrzyn G., Wegrzyn A.. ( 2009;). Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb Pathog47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  31. Loś J. M., Loś M., Wegrzyn A., Wegrzyn G.. ( 2010;). Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157 : H7. FEMS Immunol Med Microbiol58:322–329[PubMed]
    [Google Scholar]
  32. Matsushiro A., Sato K., Miyamoto H., Yamamura T., Honda T.. ( 1999;). Induction of prophages of enterohemorrhagic Escherichia coli O157 : H7 with norfloxacin. J Bacteriol181:2257–2260[PubMed]
    [Google Scholar]
  33. Mühldorfer I., Hacker J., Keusch G. T., Acheson D. W., Tschäpe H., Kane A. V., Ritter A., Olschläger T., Donohue-Rolfe A.. ( 1996;). Regulation of the Shiga-like toxin II operon in Escherichia coli . Infect Immun64:495–502[PubMed]
    [Google Scholar]
  34. Muniesa M., de Simon M., Prats G., Ferrer D., Pañella H., Jofre J.. ( 2003;). Shiga toxin 2-converting bacteriophages associated with clonal variability in Escherichia coli O157 : H7 strains of human origin isolated from a single outbreak. Infect Immun71:4554–4562 [CrossRef][PubMed]
    [Google Scholar]
  35. Neely M. N., Friedman D. I.. ( 1998;). Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol28:1255–1267 [CrossRef][PubMed]
    [Google Scholar]
  36. Neupane M., Abu-Ali G. S., Mitra A., Lacher D. W., Manning S. D., Riordan J. T.. ( 2011;). Shiga toxin 2 overexpression in Escherichia coli O157 : H7 strains associated with severe human disease. Microb Pathog51:466–470 [CrossRef][PubMed]
    [Google Scholar]
  37. Niebauer R. T., Wedekind A., Robinson A. S.. ( 2004;). Decreases in yeast expression yields of the human adenosine A2a receptor are a result of translational or post-translational events. Protein Expr Purif37:134–143 [CrossRef][PubMed]
    [Google Scholar]
  38. O’Brien A. D., Newland J. W., Miller S. F., Holmes R. K., Smith H. W., Formal S. B.. ( 1984;). Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science226:694–696 [CrossRef][PubMed]
    [Google Scholar]
  39. O’Loughlin E. V., Robins-Browne R. M.. ( 2001;). Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect3:493–507 [CrossRef][PubMed]
    [Google Scholar]
  40. Perna N. T., Plunkett G. III, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J.. & other authors ( 2001;). Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature409:529–533 [CrossRef][PubMed]
    [Google Scholar]
  41. Piddock L. J. V., Wise R.. ( 1987;). Induction of the SOS response in Escherichia coli by 4-quinolone antimicrobial agents. FEMS Microbiol Lett41:289–294 [CrossRef]
    [Google Scholar]
  42. Plunkett G. III, Rose D. J., Durfee T. J., Blattner F. R.. ( 1999;). Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157 : H7: Shiga toxin as a phage late-gene product. J Bacteriol181:1767–1778[PubMed]
    [Google Scholar]
  43. Poirier K., Faucher S. P., Béland M., Brousseau R., Gannon V., Martin C., Harel J., Daigle F.. ( 2008;). Escherichia coli O157 : H7 survives within human macrophages: global gene expression profile and involvement of the Shiga toxins. Infect Immun76:4814–4822[CrossRef]
    [Google Scholar]
  44. Ptashne M.. ( 2004;). A Genetic Switch: Phage Lambda Revisited, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Riley L. W., Remis R. S., Helgerson S. D., McGee H. B., Wells J. G., Davis B. R., Hebert R. J., Olcott E. S., Johnson L. M.. & other authors ( 1983;). Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med308:681–685 [CrossRef][PubMed]
    [Google Scholar]
  46. Serra-Moreno R., Jofre J., Muniesa M.. ( 2008;). The CI repressors of Shiga toxin-converting prophages are involved in coinfection of Escherichia coli strains, which causes a down regulation in the production of Shiga toxin 2. J Bacteriol190:4722–4735 [CrossRef][PubMed]
    [Google Scholar]
  47. Shimizu T., Kawakami S., Sato T., Sasaki T., Higashide M., Hamabata T., Ohta T., Noda M.. ( 2007;). The serine 31 residue of the B subunit of Shiga toxin 2 is essential for secretion in enterohemorrhagic Escherichia coli . Infect Immun75:2189–2200 [CrossRef][PubMed]
    [Google Scholar]
  48. Shimizu T., Ohta Y., Noda M.. ( 2009;). Shiga toxin 2 is specifically released from bacterial cells by two different mechanisms. Infect Immun77:2813–2823 [CrossRef][PubMed]
    [Google Scholar]
  49. Spears K. J., Roe A. J., Gally D. L.. ( 2006;). A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol Lett255:187–202 [CrossRef][PubMed]
    [Google Scholar]
  50. Strockbine N. A., Marques L. R., Newland J. W., Smith H. W., Holmes R. K., O’Brien A. D.. ( 1986;). Two toxin-converting phages from Escherichia coli O157 : H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun53:135–140[PubMed]
    [Google Scholar]
  51. Sung L. M., Jackson M. P., O’Brien A. D., Holmes R. K.. ( 1990;). Transcription of the Shiga-like toxin type II and Shiga-like toxin type II variant operons of Escherichia coli . J Bacteriol172:6386–6395[PubMed]
    [Google Scholar]
  52. Tozzi A. E., Caprioli A., Minelli F., Gianviti A., De Petris L., Edefonti A., Montini G., Ferretti A., De Palo T.. & other authors ( 2003;). Shiga toxin-producing Escherichia coli infections associated with hemolytic uremic syndrome, Italy, 1988–2000. Emerg Infect Dis9:106–108[PubMed][CrossRef]
    [Google Scholar]
  53. Tyler J. S., Mills M. J., Friedman D. I.. ( 2004;). The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J Bacteriol186:7670–7679 [CrossRef][PubMed]
    [Google Scholar]
  54. Wagner P. L., Acheson D. W., Waldor M. K.. ( 1999;). Isogenic lysogens of diverse Shiga toxin 2-encoding bacteriophages produce markedly different amounts of Shiga toxin. Infect Immun67:6710–6714[PubMed]
    [Google Scholar]
  55. Wagner P. L., Neely M. N., Zhang X., Acheson D. W. K., Waldor M. K., Friedman D. I.. ( 2001;). Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol183:2081–2085 [CrossRef][PubMed]
    [Google Scholar]
  56. Wagner P. L., Livny J., Neely M. N., Acheson D. W. K., Friedman D. I., Waldor M. K.. ( 2002;). Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli . Mol Microbiol44:957–970 [CrossRef][PubMed]
    [Google Scholar]
  57. Walterspiel J. N., Ashkenazi S., Morrow A. L., Cleary T. G.. ( 1992;). Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. Infection20:25–29 [CrossRef][PubMed]
    [Google Scholar]
  58. Weinstein D. L., Jackson M. P., Perera L. P., Holmes R. K., O’Brien A. D.. ( 1989;). In vivo formation of hybrid toxins comprising Shiga toxin and the Shiga-like toxins and role of the B subunit in localization and cytotoxic activity. Infect Immun57:3743–3750[PubMed]
    [Google Scholar]
  59. Woodward D. L., Clark C. G., Caldeira R. A., Ahmed R., Rodgers F. G.. ( 2002;). Verotoxigenic Escherichia coli (VTEC): a major public health threat in Canada. Can J Infect Dis Med Microbiol13:321–330[PubMed]
    [Google Scholar]
  60. Zheng J., Cui S., Teel L. D., Zhao S., Singh R., O’Brien A. D., Meng J.. ( 2008;). Identification and characterization of Shiga toxin type 2 variants in Escherichia coli isolates from animals, food, and humans. Appl Environ Microbiol74:5645–5652 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054981-0
Loading
/content/journal/micro/10.1099/mic.0.054981-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error