1887

Abstract

Among three haemolysins identified thus far in , alpha-haemolysin (HlyA) is encoded on the pathogenicity islands of extraintestinal pathogenic strains, while enterohaemolysin (EhxA) is encoded on the virulence plasmids of enterohaemorrhagic (EHEC) strains. In contrast, the gene for haemolysin E (HlyE) is located on the chromosome backbone and is therefore widely distributed among strains. However, because gene expression is repressed by the H-NS protein and because the gene has been disrupted in many strains, its haemolytic activity cannot be detected in wild-type strains by routine screening on blood agar plates. In this study, we found that the HlyE-derived haemolytic activity of enteropathogenic (EPEC) O55 : H7 can be detected after anaerobic cultivation on a washed blood agar plate (EHX plate) that is used to detect the production of EhxA. We also found that the haemolytic activity of EHEC O157 : H7 observed on EHX plates under aerobic and anaerobic growth conditions is derived from EhxA and HlyE, respectively; this differential expression of the two haemolysins occurs at the transcriptional level. Our analysis of 60 strains of various pathotypes and phylogenies for their repertoires of haemolysin genes, haemolytic phenotypes and gene sequences revealed that HlyE activity can generally be detected on EHX plates under anaerobic growth conditions if the gene is intact. Furthermore, our results indicate that gene inactivation occurred in three of the five lineages (phylogroups A, B1 and B2), which demonstrates phylogroup-specific gene disruption patterns.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054775-0
2012-03-01
2020-06-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/746.html?itemId=/content/journal/micro/10.1099/mic.0.054775-0&mimeType=html&fmt=ahah

References

  1. Beutin L., Montenegro M. A., Orskov I., Orskov F., Prada J., Zimmermann S., Stephan R.. ( 1989;). Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli . J Clin Microbiol27:2559–2564[PubMed]
    [Google Scholar]
  2. Beutin L., Aleksic S., Zimmermann S., Gleier K.. ( 1994;). Virulence factors and phenotypical traits of verotoxigenic strains of Escherichia coli isolated from human patients in Germany. Med Microbiol Immunol (Berl)183:13–21 [CrossRef][PubMed]
    [Google Scholar]
  3. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K.. & other authors ( 1997;). The complete genome sequence of Escherichia coli K-12. Science277:1453–1462 [CrossRef][PubMed]
    [Google Scholar]
  4. Bokete T. N., Whittam T. S., Wilson R. A., Clausen C. R., O’Callahan C. M., Moseley S. L., Fritsche T. R., Tarr P. I.. ( 1997;). Genetic and phenotypic analysis of Escherichia coli with enteropathogenic characteristics isolated from Seattle children. J Infect Dis175:1382–1389 [CrossRef][PubMed]
    [Google Scholar]
  5. Burgos Y., Beutin L.. ( 2010;). Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli . BMC Microbiol10:193 [CrossRef][PubMed]
    [Google Scholar]
  6. Cherepanov P. P., Wackernagel W.. ( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene158:9–14 [CrossRef][PubMed]
    [Google Scholar]
  7. Clermont O., Bonacorsi S., Bingen E.. ( 2000;). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol66:4555–4558 [CrossRef][PubMed]
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  9. Eifler N., Vetsch M., Gregorini M., Ringler P., Chami M., Philippsen A., Fritz A., Müller S. A., Glockshuber R.. & other authors ( 2006;). Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state. EMBO J25:2652–2661 [CrossRef][PubMed]
    [Google Scholar]
  10. Feng P., Lampel K. A., Karch H., Whittam T. S.. ( 1998;). Genotypic and phenotypic changes in the emergence of Escherichia coli O157 : H7. J Infect Dis177:1750–1753 [CrossRef][PubMed]
    [Google Scholar]
  11. Gansheroff L. J., Wachtel M. R., O’Brien A. D.. ( 1999;). Decreased adherence of enterohemorrhagic Escherichia coli to HEp-2 cells in the presence of antibodies that recognize the C-terminal region of intimin. Infect Immun67:6409–6417[PubMed]
    [Google Scholar]
  12. Green J., Baldwin M. L.. ( 1997;). The molecular basis for the differential regulation of the hlyE-encoded haemolysin of Escherichia coli by FNR and HlyX lies in the improved activating region 1 contact of HlyX. Microbiology143:3785–3793 [CrossRef][PubMed]
    [Google Scholar]
  13. Hayashi T., Makino K., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C. G., Ohtsubo E., Nakayama K.. & other authors ( 2001;). Complete genome sequence of enterohemorrhagic Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA Res8:11–22 [CrossRef][PubMed]
    [Google Scholar]
  14. Hunt S., Green J., Artymiuk P. J.. ( 2010;). Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv Exp Med Biol677:116–126 [CrossRef][PubMed]
    [Google Scholar]
  15. Iguchi A., Ooka T., Ogura Y., Asadulghani M., Nakayama K., Frankel G., Hayashi T.. ( 2008;). Genomic comparison of the O-antigen biosynthesis gene clusters of Escherichia coli O55 strains belonging to three distinct lineages. Microbiology154:559–570 [CrossRef][PubMed]
    [Google Scholar]
  16. Iguchi A., Thomson N. R., Ogura Y., Saunders D., Ooka T., Henderson I. R., Harris D., Asadulghani M., Kurokawa K.. & other authors ( 2009;). Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127 : H6 strain E2348/69. J Bacteriol191:347–354 [CrossRef][PubMed]
    [Google Scholar]
  17. Iida K., Mizunoe Y., Wai S. N., Yoshida S.. ( 2001;). Type 1 fimbriation and its phase switching in diarrheagenic Escherichia coli strains. Clin Diagn Lab Immunol8:489–495[PubMed]
    [Google Scholar]
  18. Kao J. S., Stucker D. M., Warren J. W., Mobley H. L.. ( 1997;). Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect Immun65:2812–2820[PubMed]
    [Google Scholar]
  19. Leopold S. R., Magrini V., Holt N. J., Shaikh N., Mardis E. R., Cagno J., Ogura Y., Iguchi A., Hayashi T.. & other authors ( 2009;). A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proc Natl Acad Sci U S A106:8713–8718[PubMed][CrossRef]
    [Google Scholar]
  20. Li H., Granat A., Stewart V., Gillespie J. R.. ( 2008;). RpoS, H-NS, and DsrA influence EHEC hemolysin operon (ehxCABD) transcription in Escherichia coli O157 : H7 strain EDL933. FEMS Microbiol Lett285:257–262 [CrossRef][PubMed]
    [Google Scholar]
  21. Lithgow J. K., Haider F., Roberts I. S., Green J.. ( 2007;). Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol66:685–698 [CrossRef][PubMed]
    [Google Scholar]
  22. Ludwig A., Tengel C., Bauer S., Bubert A., Benz R., Mollenkopf H. J., Goebel W.. ( 1995;). SlyA, a regulatory protein from Salmonella typhimurium, induces a haemolytic and pore-forming protein in Escherichia coli . Mol Gen Genet249:474–486 [CrossRef][PubMed]
    [Google Scholar]
  23. Ludwig A., Bauer S., Benz R., Bergmann B., Goebel W.. ( 1999;). Analysis of the SlyA-controlled expression, subcellular localization and pore-forming activity of a 34 kDa haemolysin (ClyA) from Escherichia coli K-12. Mol Microbiol31:557–567 [CrossRef][PubMed]
    [Google Scholar]
  24. Ludwig A., von Rhein C., Bauer S., Hüttinger C., Goebel W.. ( 2004;). Molecular analysis of cytolysin A (ClyA) in pathogenic Escherichia coli strains. J Bacteriol186:5311–5320 [CrossRef][PubMed]
    [Google Scholar]
  25. Malo M. S., Loughlin R. E.. ( 1988;). Promoter-detection vectors for Escherichia coli with multiple useful features. Gene64:207–215 [CrossRef][PubMed]
    [Google Scholar]
  26. Miller J. H.. ( 1972;). Assay of β-galactosidase. Experiments in Molecular Genetics352–355 Miller J. H.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Mueller M., Grauschopf U., Maier T., Glockshuber R., Ban N.. ( 2009;). The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature459:726–730 [CrossRef][PubMed]
    [Google Scholar]
  28. Murphy E.. ( 1985;). Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3″) (9). Mol Gen Genet200:33–39 [CrossRef][PubMed]
    [Google Scholar]
  29. Müsken A., Bielaszewska M., Greune L., Schweppe C. H., Müthing J., Schmidt H., Schmidt M. A., Karch H., Zhang W.. ( 2008;). Anaerobic conditions promote expression of Sfp fimbriae and adherence of sorbitol-fermenting enterohemorrhagic Escherichia coli O157 : NM to human intestinal epithelial cells. Appl Environ Microbiol74:1087–1093 [CrossRef][PubMed]
    [Google Scholar]
  30. Ogura Y., Ooka T., Iguchi A., Toh H., Asadulghani M., Oshima K., Kodama T., Abe H., Nakayama K.. & other authors ( 2009;). Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli . Proc Natl Acad Sci U S A106:17939–17944 [CrossRef][PubMed]
    [Google Scholar]
  31. Ohnishi M., Terajima J., Kurokawa K., Nakayama K., Murata T., Tamura K., Ogura Y., Watanabe H., Hayashi T.. ( 2002;). Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci U S A99:17043–17048 [CrossRef][PubMed]
    [Google Scholar]
  32. Ooka T., Vieira M. A., Ogura Y., Beutin L., La Ragione R., van Diemen P. M., Stevens M. P., Aktan I., Cawthraw S.. & other authors ( 2007;). Characterization of tccP2 carried by atypical enteropathogenic Escherichia coli . FEMS Microbiol Lett271:126–135 [CrossRef][PubMed]
    [Google Scholar]
  33. Oscarsson J., Mizunoe Y., Uhlin B. E., Haydon D. J.. ( 1996;). Induction of haemolytic activity in Escherichia coli by the slyA gene product. Mol Microbiol20:191–199 [CrossRef][PubMed]
    [Google Scholar]
  34. Oscarsson J., Mizunoe Y., Li L., Lai X. H., Wieslander A., Uhlin B. E.. ( 1999;). Molecular analysis of the cytolytic protein ClyA (SheA) from Escherichia coli . Mol Microbiol32:1226–1238 [CrossRef][PubMed]
    [Google Scholar]
  35. Oshima K., Toh H., Ogura Y., Sasamoto H., Morita H., Park S. H., Ooka T., Iyoda S., Taylor T. D.. & other authors ( 2008;). Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Res15:375–386 [CrossRef][PubMed]
    [Google Scholar]
  36. Reid S. D., Herbelin C. J., Bumbaugh A. C., Selander R. K., Whittam T. S.. ( 2000;). Parallel evolution of virulence in pathogenic Escherichia coli . Nature406:64–67 [CrossRef][PubMed]
    [Google Scholar]
  37. Saitoh T., Iyoda S., Yamamoto S., Lu Y., Shimuta K., Ohnishi M., Terajima J., Watanabe H.. ( 2008;). Transcription of the ehx enterohemolysin gene is positively regulated by GrlA, a global regulator encoded within the locus of enterocyte effacement in enterohemorrhagic Escherichia coli . J Bacteriol190:4822–4830 [CrossRef][PubMed]
    [Google Scholar]
  38. Schmidt H., Karch H., Beutin L.. ( 1994;). The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS Microbiol Lett117:189–196[PubMed]
    [Google Scholar]
  39. Tobe T., Sasakawa C., Okada N., Honma Y., Yoshikawa M.. ( 1992;). vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri . J Bacteriol174:6359–6367[PubMed]
    [Google Scholar]
  40. von Rhein C., Bauer S., López Sanjurjo E. J., Benz R., Goebel W., Ludwig A.. ( 2009;). ClyA cytolysin from Salmonella: distribution within the genus, regulation of expression by SlyA, and pore-forming characteristics. Int J Med Microbiol299:21–35 [CrossRef][PubMed]
    [Google Scholar]
  41. Welch R. A.. ( 1991;). Pore-forming cytolysins of Gram-negative bacteria. Mol Microbiol5:521–528 [CrossRef][PubMed]
    [Google Scholar]
  42. Welch R. A., Dellinger E. P., Minshew B., Falkow S.. ( 1981;). Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature294:665–667 [CrossRef][PubMed]
    [Google Scholar]
  43. Westermark M., Oscarsson J., Mizunoe Y., Urbonaviciene J., Uhlin B. E.. ( 2000;). Silencing and activation of ClyA cytotoxin expression in Escherichia coli . J Bacteriol182:6347–6357 [CrossRef][PubMed]
    [Google Scholar]
  44. Wick L. M., Qi W., Lacher D. W., Whittam T. S.. ( 2005;). Evolution of genomic content in the stepwise emergence of Escherichia coli O157 : H7. J Bacteriol187:1783–1791 [CrossRef][PubMed]
    [Google Scholar]
  45. Wyborn N. R., Stapleton M. R., Norte V. A., Roberts R. E., Grafton J., Green J.. ( 2004;). Regulation of Escherichia coli hemolysin E expression by H-NS and Salmonella SlyA. J Bacteriol186:1620–1628 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhou Z., Li X., Liu B., Beutin L., Xu J., Ren Y., Feng L., Lan R., Reeves P. R., Wang L.. ( 2010;). Derivation of Escherichia coli O157 : H7 from its O55 : H7 precursor. PLoS ONE5:e8700 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054775-0
Loading
/content/journal/micro/10.1099/mic.0.054775-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error