1887

Abstract

Mycobacterial persistence has gained a lot of attention with respect to developing novel antitubercular drugs, which could drastically reduce the duration of tuberculosis (TB) therapy. A better understanding of the physiology of , and of the metabolic state of the bacillus during the latent period, is a primary need in finding drug targets against persistent TB. Recent biochemical and genetic studies of nitrate reduction in mycobacteria have revealed the roles of distinct proteins and enzymes involved in the pathway. The differential degree of nitrate reduction among pathogenic and non-pathogenic mycobacterial species, and its regulation during oxygen and nutrient limitation, suggest a link between nitrate reduction pathways and latency. The respiratory and assimilatory reduction of nitrate in mycobacteria may be interconnected to facilitate rapid adaptation to changing oxygen and/or nitrogen conditions, increasing metabolic flexibility for survival in the hostile host environment. This review summarizes the nitrate metabolic pathways operative in mycobacteria to provide an insight into the mechanisms that has evolved to adapt successfully to the host environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054759-0
2012-02-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/301.html?itemId=/content/journal/micro/10.1099/mic.0.054759-0&mimeType=html&fmt=ahah

References

  1. Aly S., Wagner K., Keller C., Malm S., Malzan A., Brandau S., Bange F. C., Ehlers S.. ( 2006;). Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol210:298–305 [CrossRef][PubMed]
    [Google Scholar]
  2. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J.. ( 1995;). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta1232:97–173 [CrossRef][PubMed]
    [Google Scholar]
  3. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K.. ( 2002;). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol43:717–731 [CrossRef][PubMed]
    [Google Scholar]
  4. Bogdan C., Röllinghoff M., Diefenbach A.. ( 2000;). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol12:64–76 [CrossRef][PubMed]
    [Google Scholar]
  5. Borgdorff M. W., Floyd K., Broekmans J. F.. ( 2002;). Interventions to reduce tuberculosis mortality and transmission in low- and middle-income countries. Bull World Health Organ80:217–227[PubMed]
    [Google Scholar]
  6. Brown G. C.. ( 1999;). Nitric oxide and mitochondrial respiration. Biochim Biophys Acta1411:351–369 [CrossRef][PubMed]
    [Google Scholar]
  7. Camus J. C., Pryor M. J., Médigue C., Cole S. T.. ( 2002;). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology148:2967–2973[PubMed]
    [Google Scholar]
  8. Cegielski J. P., Chin D. P., Espinal M. A., Frieden T. R., Rodriquez Cruz R., Talbot E. A., Weil D. E. C., Zaleskis R., Raviglione M. C.. ( 2002;). The global tuberculosis situation. Progress and problems in the 20th century, prospects for the 21st century. Infect Dis Clin North Am16:1–58 [CrossRef][PubMed]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. & other authors ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544 [CrossRef][PubMed]
    [Google Scholar]
  10. Cosma C. L., Sherman D. R., Ramakrishnan L.. ( 2003;). The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol57:641–676 [CrossRef][PubMed]
    [Google Scholar]
  11. Dick T.. ( 2001;). Dormant tubercle bacilli: the key to more effective TB chemotherapy?. J Antimicrob Chemother47:117–118 [CrossRef][PubMed]
    [Google Scholar]
  12. Dick T., Lee B. H., Murugasu-Oei B.. ( 1998;). Oxygen depletion induced dormancy in Mycobacterium smegmatis . FEMS Microbiol Lett163:159–164 [CrossRef][PubMed]
    [Google Scholar]
  13. Dye C., Scheele S., Dolin P., Pathania V., Raviglione M. C.. ( 1999;). Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA282:677–686 [CrossRef][PubMed]
    [Google Scholar]
  14. Ehrt S. D., Schnappinger D.. ( 2007;). Mycobacterium tuberculosis virulence: lipids inside and out. Nat Med13:284–285 [CrossRef][PubMed]
    [Google Scholar]
  15. Flesch I. E., Kaufmann S. H.. ( 1991;). Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect Immun59:3213–3218[PubMed]
    [Google Scholar]
  16. Fritz C., Maass S., Kreft A., Bange F. C.. ( 2002;). Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect Immun70:286–291 [CrossRef][PubMed]
    [Google Scholar]
  17. Gandhi N. R., Moll A., Sturm A. W., Pawinski R., Govender T., Lalloo U., Zeller K., Andrews J., Friedland G.. ( 2006;). Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet368:1575–1580 [CrossRef][PubMed]
    [Google Scholar]
  18. Gbayisomore A., Lardizabal A. A., Reichman L. B.. ( 2000;). Update: prevention and treatment of tuberculosis. Curr Opin Infect Dis13:155–159 [CrossRef][PubMed]
    [Google Scholar]
  19. Glaziou P., Floyd K., Raviglione M.. ( 2009;). Global burden and epidemiology of tuberculosis. Clin Chest Med30:621–636 [CrossRef][PubMed]
    [Google Scholar]
  20. Goh K. S., Rastogi N., Berchel M., Huard R. C., Sola C.. ( 2005;). Molecular evolutionary history of tubercle bacilli assessed by study of the polymorphic nucleotide within the nitrate reductase (narGHJI) operon promoter. J Clin Microbiol43:4010–4014 [CrossRef][PubMed]
    [Google Scholar]
  21. Gomez J. E., McKinney J. D.. ( 2004;). M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb)84:29–44 [CrossRef][PubMed]
    [Google Scholar]
  22. Hedgecock L. W., Costello R. L.. ( 1962;). Utilization of nitrate by pathogenic and saprophytic mycobacteria. J Bacteriol84:195–205[PubMed]
    [Google Scholar]
  23. Hochstein L. I., Tomlinson G. A.. ( 1988;). The enzymes associated with denitrification. Annu Rev Microbiol42:231–261 [CrossRef][PubMed]
    [Google Scholar]
  24. Höner zu Bentrup K., Russell D. G.. ( 2001;). Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol9:597–605 [CrossRef][PubMed]
    [Google Scholar]
  25. Hutter B., Dick T.. ( 1999;). Up-regulation of narX, encoding a putative ‘fused nitrate reductase’ in anaerobic dormant Mycobacterium bovis BCG. FEMS Microbiol Lett178:63–69 [CrossRef][PubMed]
    [Google Scholar]
  26. Hutter B., Dick T.. ( 2000;). Analysis of the dormancy-inducible narK2 promoter in Mycobacterium bovis BCG. FEMS Microbiol Lett188:141–146 [CrossRef][PubMed]
    [Google Scholar]
  27. Kelm M.. ( 1999;). Nitric oxide metabolism and breakdown. Biochim Biophys Acta1411:273–289 [CrossRef][PubMed]
    [Google Scholar]
  28. Khan A., Sarkar D.. ( 2006;). Identification of a respiratory-type nitrate reductase and its role for survival of Mycobacterium smegmatis in Wayne model. Microb Pathog41:90–95 [CrossRef][PubMed]
    [Google Scholar]
  29. Khan A., Akhtar S., Ahmad J. N., Sarkar D.. ( 2008;). Presence of a functional nitrate assimilation pathway in Mycobacterium smegmatis . Microb Pathog44:71–77 [CrossRef][PubMed]
    [Google Scholar]
  30. Lim A., Eleuterio M., Hutter B., Murugasu-Oei B., Dick T.. ( 1999;). Oxygen depletion-induced dormancy in Mycobacterium bovis BCG. J Bacteriol181:2252–2256[PubMed]
    [Google Scholar]
  31. Liu K., Yu J., Russell D. G.. ( 2003;). pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology149:1829–1835 [CrossRef][PubMed]
    [Google Scholar]
  32. Malm S., Tiffert Y., Micklinghoff J., Schultze S., Joost I., Weber I., Horst S., Ackermann B., Schmidt M.. & other authors ( 2009;). The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis . Microbiology155:1332–1339 [CrossRef][PubMed]
    [Google Scholar]
  33. McKinney J. D., Höner zu Bentrup K., Muñoz-Elías E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G.. ( 2000;). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature406:735–738 [CrossRef][PubMed]
    [Google Scholar]
  34. Moreno-Vivián C., Cabello P., Martínez-Luque M., Blasco R., Castillo F.. ( 1999;). Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol181:6573–6584[PubMed]
    [Google Scholar]
  35. Muñoz-Elías E. J., McKinney J. D.. ( 2005;). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med11:638–644 [CrossRef][PubMed]
    [Google Scholar]
  36. Muñoz-Elías E. J., Upton A. M., Cherian J., McKinney J. D.. ( 2006;). Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol60:1109–1122 [CrossRef][PubMed]
    [Google Scholar]
  37. Pandey A. K., Sassetti C. M.. ( 2008;). Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A105:4376–4380 [CrossRef][PubMed]
    [Google Scholar]
  38. Parrish N. M., Dick J. D., Bishai W. R.. ( 1998;). Mechanisms of latency in Mycobacterium tuberculosis . Trends Microbiol6:107–112 [CrossRef][PubMed]
    [Google Scholar]
  39. Rhee K. Y., de Carvalho L. P., Bryk R., Ehrt S., Marrero J., Park S. W., Schnappinger D., Venugopal A., Nathan C.. ( 2011;). Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol19:307–314[PubMed][CrossRef]
    [Google Scholar]
  40. Russell D. G., VanderVen B. C., Lee W., Abramovitch R. B., Kim M. J., Homolka S., Niemann S., Rohde K. H.. ( 2010;). Mycobacterium tuberculosis wears what it eats. Cell Host Microbe8:68–76 [CrossRef][PubMed]
    [Google Scholar]
  41. Rustad T. R., Harrell M. I., Liao R., Sherman D. R.. ( 2008;). The enduring hypoxic response of Mycobacterium tuberculosis . PLoS ONE3:e1502 [CrossRef][PubMed]
    [Google Scholar]
  42. Rustad T. R., Sherrid A. M., Minch K. J., Sherman D. R.. ( 2009;). Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol11:1151–1159 [CrossRef][PubMed]
    [Google Scholar]
  43. Savvi S., Warner D. F., Kana B. D., McKinney J. D., Mizrahi V., Dawes S. S.. ( 2008;). Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol190:3886–3895 [CrossRef][PubMed]
    [Google Scholar]
  44. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D.. & other authors ( 2003;). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med198:693–704 [CrossRef][PubMed]
    [Google Scholar]
  45. Shi S., Ehrt S.. ( 2006;). Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun74:56–63 [CrossRef][PubMed]
    [Google Scholar]
  46. Shi L. B., Sohaskey C. D., Kana B. D., Dawes S., North R. J., Mizrahi V., Gennaro M. L.. ( 2005;). Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A102:15629–15634 [CrossRef][PubMed]
    [Google Scholar]
  47. Shi L., Sohaskey C. D., Pfeiffer C., Datta P., Parks M., McFadden J., North R. J., Gennaro M. L.. ( 2010;). Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol78:1199–1215 [CrossRef][PubMed]
    [Google Scholar]
  48. Sohaskey C. D.. ( 2005;). Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology151:3803–3810 [CrossRef][PubMed]
    [Google Scholar]
  49. Sohaskey C. D.. ( 2008;). Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol190:2981–2986 [CrossRef][PubMed]
    [Google Scholar]
  50. Sohaskey C. D., Modesti L.. ( 2009;). Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2 . FEMS Microbiol Lett290:129–134 [CrossRef][PubMed]
    [Google Scholar]
  51. Sohaskey C. D., Wayne L. G.. ( 2003;). Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis . J Bacteriol185:7247–7256 [CrossRef][PubMed]
    [Google Scholar]
  52. Stermann M., Bohrssen A., Diephaus C., Maass S., Bange F. C.. ( 2003;). Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis . J Clin Microbiol41:3252–3259 [CrossRef][PubMed]
    [Google Scholar]
  53. Stermann M., Sedlacek L., Maass S., Bange F. C.. ( 2004;). A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis . J Bacteriol186:2856–2861 [CrossRef][PubMed]
    [Google Scholar]
  54. Stewart G. R., Robertson B. D., Young D. B.. ( 2003;). Tuberculosis: a problem with persistence. Nat Rev Microbiol1:97–105 [CrossRef][PubMed]
    [Google Scholar]
  55. Stuehr D. J.. ( 1999;). Mammalian nitric oxide synthases. Biochim Biophys Acta1411:217–230 [CrossRef][PubMed]
    [Google Scholar]
  56. Tan M. P., Sequeira P., Lin W. W., Phong W. Y., Cliff P., Ng S. H., Lee B. H., Camacho L., Schnappinger D.. & other authors ( 2010;). Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS ONE5:e13356 [CrossRef][PubMed]
    [Google Scholar]
  57. Tsai M. C., Chakravarty S., Zhu G. F., Xu J. Y., Tanaka K., Koch C., Tufariello J., Flynn J., Chan J.. ( 2006;). Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol8:218–232 [CrossRef][PubMed]
    [Google Scholar]
  58. Via L. E., Lin P. L., Ray S. M., Carrillo J., Allen S. S., Eum S. Y., Taylor K., Klein E., Manjunatha U.. & other authors ( 2008;). Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun76:2333–2340 [CrossRef][PubMed]
    [Google Scholar]
  59. Virtanen S.. ( 1960;). A study of nitrate reduction by mycobacteria. The use of the nitrate reduction test in the identification of mycobacteria. Acta Tuberc Scand, Suppl48:1–119[PubMed][CrossRef]
    [Google Scholar]
  60. Wayne L. G.. ( 2001;). In vitro model of hypoxically induced nonreplicating persistence of Mycobacterium tuberculosis . Methods Mol Med54:247–269[PubMed]
    [Google Scholar]
  61. Wayne L. G., Doubek J. R.. ( 1965;). Classification and identification of mycobacteria. II. Tests employing nitrate and nitrite as substrate. Am Rev Respir Dis91:738–745[PubMed]
    [Google Scholar]
  62. Wayne L. G., Hayes L. G.. ( 1996;). An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun64:2062–2069[PubMed]
    [Google Scholar]
  63. Wayne L. G., Hayes L. G.. ( 1998;). Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis . Tuber Lung Dis79:127–132 [CrossRef][PubMed]
    [Google Scholar]
  64. Wayne L. G., Lin K. Y.. ( 1982;). Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun37:1042–1049[PubMed]
    [Google Scholar]
  65. Wayne L. G., Sohaskey C. D.. ( 2001;). Nonreplicating persistence of Mycobacterium tuberculosis . Annu Rev Microbiol55:139–163 [CrossRef][PubMed]
    [Google Scholar]
  66. Weber I., Fritz C., Ruttkowski S., Kreft A., Bange F. C.. ( 2000;). Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol35:1017–1025 [CrossRef][PubMed]
    [Google Scholar]
  67. World Health Organization ( 2007;). Tuberculosis fact sheet number 104, revised March 2007. World Health Organization, Geneva, Switzerland. http://www.who.int/mediacentre/factsheets/fs104/en/
  68. World Health Organization ( 2008;). WHO Report: Global Tuberculosis Control: Surveillance, Planning, Financing. (WHO/HTM/TB/2008.376) Geneva: World Health Organization;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054759-0
Loading
/content/journal/micro/10.1099/mic.0.054759-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error