1887
Preview this article:
Zoom in
Zoomout

On sialic acid transport and utilization by , Page 1 of 1

| /docserver/preview/fulltext/micro/157/12/3253_mic054692-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054692-0
2011-12-01
2020-10-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3253.html?itemId=/content/journal/micro/10.1099/mic.0.054692-0&mimeType=html&fmt=ahah

References

  1. Allen S., Zaleski A., Johnston J. W., Gibson B. W., Apicella M. A.. ( 2005;). Novel sialic acid transporter of Haemophilus influenzae . Infect Immun73:5291–5300 [CrossRef][PubMed]
    [Google Scholar]
  2. Almagro-Moreno S., Boyd E. F.. ( 2009;). Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect Immun77:3807–3816 [CrossRef][PubMed]
    [Google Scholar]
  3. Fischer M., Zhang Q. Y., Hubbard R. E., Thomas G. H.. ( 2010;). Caught in a TRAP: substrate-binding proteins in secondary transport. Trends Microbiol18:471–478 [CrossRef][PubMed]
    [Google Scholar]
  4. Jacob A., Sinha V. B., Sahib M. K., Srivastava R., Kaper J. B., Srivastava B. S.. ( 1993;). Identification of a 33 kDa antigen associated with an adhesive and colonizing strain of Vibrio cholerae El Tor and its role in protection. Vaccine11:376–382 [CrossRef][PubMed]
    [Google Scholar]
  5. Jermyn W. S., Boyd E. F.. ( 2002;). Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology148:3681–3693[PubMed]
    [Google Scholar]
  6. Johnston J. W., Coussens N. P., Allen S., Houtman J. C., Turner K. H., Zaleski A., Ramaswamy S., Gibson B. W., Apicella M. A.. ( 2008;). Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem283:855–865 [CrossRef][PubMed]
    [Google Scholar]
  7. Müller A., Severi E., Mulligan C., Watts A. G., Kelly D. J., Wilson K. S., Wilkinson A. J., Thomas G. H.. ( 2006;). Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae . J Biol Chem281:22212–22222 [CrossRef][PubMed]
    [Google Scholar]
  8. Mulligan C., Geertsma E. R., Severi E., Kelly D. J., Poolman B., Thomas G. H.. ( 2009;). The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci U S A106:1778–1783 [CrossRef][PubMed]
    [Google Scholar]
  9. Mulligan C., Fischer M., Thomas G. H.. ( 2011;). Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev35:68–86 [CrossRef][PubMed]
    [Google Scholar]
  10. Severi E., Randle G., Kivlin P., Whitfield K., Young R., Moxon R., Kelly D., Hood D., Thomas G. H.. ( 2005;). Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol58:1173–1185 [CrossRef][PubMed]
    [Google Scholar]
  11. Severi E., Hood D. W., Thomas G. H.. ( 2007;). Sialic acid utilization by bacterial pathogens. Microbiology153:2817–2822 [CrossRef][PubMed]
    [Google Scholar]
  12. Sharma S. K., Moe T. S., Srivastava R., Chandra D., Srivastava B. S.. ( 2011;). Functional characterization of VC1929 of Vibrio cholerae El Tor: role in mannose-sensitive haemagglutination, virulence and utilization of sialic acid. Microbiology157:3180–3186[PubMed][CrossRef]
    [Google Scholar]
  13. Thomas G. H., Southworth T., León-Kempis M. R., Leech A., Kelly D. J.. ( 2006;). Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology152:187–198 [CrossRef][PubMed]
    [Google Scholar]
  14. Valentini M., Storelli N., Lapouge K.. ( 2011;). Identification of C4-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1. J Bacteriol193:4307–4316 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054692-0
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error