1887
Preview this article:
Zoom in
Zoomout

On sialic acid transport and utilization by , Page 1 of 1

| /docserver/preview/fulltext/micro/157/12/3253_mic054692-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054692-0
2011-12-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3253.html?itemId=/content/journal/micro/10.1099/mic.0.054692-0&mimeType=html&fmt=ahah

References

  1. Allen S., Zaleski A., Johnston J. W., Gibson B. W., Apicella M. A. ( 2005). Novel sialic acid transporter of Haemophilus influenzae . Infect Immun 73:5291–5300 [View Article][PubMed]
    [Google Scholar]
  2. Almagro-Moreno S., Boyd E. F. ( 2009). Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect Immun 77:3807–3816 [View Article][PubMed]
    [Google Scholar]
  3. Fischer M., Zhang Q. Y., Hubbard R. E., Thomas G. H. ( 2010). Caught in a TRAP: substrate-binding proteins in secondary transport. Trends Microbiol 18:471–478 [View Article][PubMed]
    [Google Scholar]
  4. Jacob A., Sinha V. B., Sahib M. K., Srivastava R., Kaper J. B., Srivastava B. S. ( 1993). Identification of a 33 kDa antigen associated with an adhesive and colonizing strain of Vibrio cholerae El Tor and its role in protection. Vaccine 11:376–382 [View Article][PubMed]
    [Google Scholar]
  5. Jermyn W. S., Boyd E. F. ( 2002). Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148:3681–3693[PubMed]
    [Google Scholar]
  6. Johnston J. W., Coussens N. P., Allen S., Houtman J. C., Turner K. H., Zaleski A., Ramaswamy S., Gibson B. W., Apicella M. A. ( 2008). Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem 283:855–865 [View Article][PubMed]
    [Google Scholar]
  7. Müller A., Severi E., Mulligan C., Watts A. G., Kelly D. J., Wilson K. S., Wilkinson A. J., Thomas G. H. ( 2006). Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae . J Biol Chem 281:22212–22222 [View Article][PubMed]
    [Google Scholar]
  8. Mulligan C., Geertsma E. R., Severi E., Kelly D. J., Poolman B., Thomas G. H. ( 2009). The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci U S A 106:1778–1783 [View Article][PubMed]
    [Google Scholar]
  9. Mulligan C., Fischer M., Thomas G. H. ( 2011). Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 35:68–86 [View Article][PubMed]
    [Google Scholar]
  10. Severi E., Randle G., Kivlin P., Whitfield K., Young R., Moxon R., Kelly D., Hood D., Thomas G. H. ( 2005). Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 58:1173–1185 [View Article][PubMed]
    [Google Scholar]
  11. Severi E., Hood D. W., Thomas G. H. ( 2007). Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822 [View Article][PubMed]
    [Google Scholar]
  12. Sharma S. K., Moe T. S., Srivastava R., Chandra D., Srivastava B. S. ( 2011). Functional characterization of VC1929 of Vibrio cholerae El Tor: role in mannose-sensitive haemagglutination, virulence and utilization of sialic acid. Microbiology 157:3180–3186[PubMed] [CrossRef]
    [Google Scholar]
  13. Thomas G. H., Southworth T., León-Kempis M. R., Leech A., Kelly D. J. ( 2006). Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology 152:187–198 [View Article][PubMed]
    [Google Scholar]
  14. Valentini M., Storelli N., Lapouge K. ( 2011). Identification of C4-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1. J Bacteriol 193:4307–4316 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054692-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error