Biochemical characterization of CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis Free

Abstract

The genome of the industrially important fungus encodes a large number of glycoside hydrolase family 18 members annotated as chitinases. We identified one of these putative chitinases, CfcI, as a representative of a distinct phylogenetic clade of homologous enzymes conserved in all sequenced species. Where the catalytic domain of more distantly related chitinases consists of a triosephosphate isomerase barrel in which a small additional (α+β) domain is inserted, CfcI-like proteins were found to have, in addition, a carbohydrate-binding module (CBM18) that is inserted in the (α+β) domain next to the substrate-binding cleft. This unusual domain structure and sequence dissimilarity to previously characterized chitinases suggest that CfcI has a novel activity or function different from chitinases investigated so far. Following its heterologous expression and purification, its biochemical characterization showed that CfcI displays optimal activity at pH 4 and 55–65 °C and degrades chitin oligosaccharides by releasing -acetylglucosamine from the reducing end, possibly via a processive mechanism. This is the first fungal family 18 exochitinase described, to our knowledge, that exclusively releases monomers. The expression profile suggests that its physiological function is important in processes that take place during the late stages of the aspergillus life cycle, such as autolysis or sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054650-0
2012-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2168.html?itemId=/content/journal/micro/10.1099/mic.0.054650-0&mimeType=html&fmt=ahah

References

  1. Adav S. S., Li A. A., Manavalan A., Punt P., Sze S. K. ( 2010). Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. J Proteome Res 9:3932–3940 [View Article][PubMed]
    [Google Scholar]
  2. Alcazar-Fuoli L., Clavaud C., Lamarre C., Aimanianda V., Seidl-Seiboth V., Mellado E., Latgé J. P. ( 2011). Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus . Fungal Genet Biol 48:418–429 [View Article][PubMed]
    [Google Scholar]
  3. Andersen M. R., Salazar M. P., Schaap P. J., van de Vondervoort P. J., Culley D., Thykaer J., Frisvad J. C., Nielsen K. F., Albang R. & other authors ( 2011). Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897 [View Article][PubMed]
    [Google Scholar]
  4. Arnaud M. B., Chibucos M. C., Costanzo M. C., Crabtree J., Inglis D. O., Lotia A., Orvis J., Shah P., Skrzypek M. S. & other authors ( 2010). The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res 38:Database issueD420–D427 [View Article][PubMed]
    [Google Scholar]
  5. Aronson N. N. Jr, Backes M., Kuranda M. J. ( 1989). Rat liver chitobiase: purification, properties, and role in the lysosomal degradation of Asn-linked glycoproteins. Arch Biochem Biophys 272:290–300 [View Article][PubMed]
    [Google Scholar]
  6. Balducci C., Bibi L., Berg T., Persichetti E., Tiribuzi R., Martino S., Paciotti S., Roberti R., Orlacchio A., Beccari T. ( 2008). Molecular cloning and structural organization of the gene encoding the mouse lysosomal di-N-acetylchitobiase (ctbs). Gene 416:85–91 [View Article][PubMed]
    [Google Scholar]
  7. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. ( 2004). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [View Article][PubMed]
    [Google Scholar]
  8. Bennett J. W., Lasure L. L., Alic M. ( 1991). More Gene Manipulations in Fungi San Diego: Academic Press;
    [Google Scholar]
  9. Boraston A. B., Bolam D. N., Gilbert H. J., Davies G. J. ( 2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781 [View Article][PubMed]
    [Google Scholar]
  10. Bos C. J., Debets A. J., Swart K., Huybers A., Kobus G., Slakhorst S. M. ( 1988). Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger . Curr Genet 14:437–443 [View Article][PubMed]
    [Google Scholar]
  11. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  12. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B. ( 2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:Database issueD233–D238 [View Article][PubMed]
    [Google Scholar]
  13. Edgar R. C. ( 2004). muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113 [View Article][PubMed]
    [Google Scholar]
  14. Eijsink V. G., Vaaje-Kolstad G., Vårum K. M., Horn S. J. ( 2008). Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 26:228–235 [View Article][PubMed]
    [Google Scholar]
  15. Eisenhaber B., Schneider G., Wildpaner M., Eisenhaber F. ( 2004). A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe . J Mol Biol 337:243–253 [View Article][PubMed]
    [Google Scholar]
  16. Ferreira de Oliveira J. M., van Passel M. W., Schaap P. J., de Graaff L. H. ( 2011). Proteomic analysis of the secretory response of Aspergillus niger to d-maltose and d-xylose. PLoS ONE 6:e20865 [View Article][PubMed]
    [Google Scholar]
  17. Fontaine T., Simenel C., Dubreucq G., Adam O., Delepierre M., Lemoine J., Vorgias C. E., Diaquin M., Latgé J. P. ( 2000). Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607[PubMed]
    [Google Scholar]
  18. Fukamizo T., Sasaki C., Schelp E., Bortone K., Robertus J. D. ( 2001). Kinetic properties of chitinase-1 from the fungal pathogen Coccidioides immitis . Biochemistry 40:2448–2454 [View Article][PubMed]
    [Google Scholar]
  19. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. ( 2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788 [View Article][PubMed]
    [Google Scholar]
  20. Gruber S., Vaaje-Kolstad G., Matarese F., López-Mondéjar R., Kubicek C. P., Seidl-Seiboth V. ( 2011). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride . Glycobiology 21:122–133 [View Article][PubMed]
    [Google Scholar]
  21. Hall T. A. ( 1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  22. Hamaguchi T., Ito T., Inoue Y., Limpaseni T., Pongsawasdi P., Ito K. ( 2010). Purification, characterization and molecular cloning of a novel endo-β-N-acetylglucosaminidase from the basidiomycete, Flammulina velutipes . Glycobiology 20:420–432 [View Article][PubMed]
    [Google Scholar]
  23. Heuts D. P., van Hellemond E. W., Janssen D. B., Fraaije M. W. ( 2007). Discovery, characterization, and kinetic analysis of an alditol oxidase from Streptomyces coelicolor . J Biol Chem 282:20283–20291 [View Article][PubMed]
    [Google Scholar]
  24. Hoell I. A., Klemsdal S. S., Vaaje-Kolstad G., Horn S. J., Eijsink V. G. ( 2005). Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain P1. Biochim Biophys Acta 1748:180–190[PubMed] [CrossRef]
    [Google Scholar]
  25. Horn S. J., Sørbotten A., Synstad B., Sikorski P., Sørlie M., Vårum K. M., Eijsink V. G. ( 2006). Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens . FEBS J 273:491–503 [View Article][PubMed]
    [Google Scholar]
  26. Hreggvidsson G. O., Dobruchowska J. M., Fridjonsson O. H., Jonsson J. O., Gerwig G. J., Aevarsson A., Kristjansson J. K., Curti D., Redgwell R. R. & other authors ( 2011). Exploring novel non-Leloir β-glucosyltransferases from proteobacteria for modifying linear (β1-3)-linked gluco-oligosaccharide chains. Glycobiology 21:304–328 [View Article][PubMed]
    [Google Scholar]
  27. IUBMB ( 1992). Enzyme Nomenclature New York: Academic Press;
    [Google Scholar]
  28. Jaques A. K., Fukamizo T., Hall D., Barton R. C., Escott G. M., Parkinson T., Hitchcock C. A., Adams D. J. ( 2003). Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology 149:2931–2939 [View Article][PubMed]
    [Google Scholar]
  29. Jørgensen T. R., Nitsche B. M., Lamers G. E., Arentshorst M., van den Hondel C. A., Ram A. F. ( 2010). Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol 76:5344–5355 [View Article][PubMed]
    [Google Scholar]
  30. Karlsson M., Stenlid J. ( 2008). Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol Bioinform Online 4:47–60[PubMed]
    [Google Scholar]
  31. Karlsson M., Stenlid J. ( 2009). Evolution of family 18 glycoside hydrolases: diversity, domain structures and phylogenetic relationships. J Mol Microbiol Biotechnol 16:208–223 [View Article][PubMed]
    [Google Scholar]
  32. Li H., Greene L. H. ( 2010). Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS ONE 5:e8654 [View Article][PubMed]
    [Google Scholar]
  33. López-Mondéjar R., Catalano V., Kubicek C. P., Seidl V. ( 2009). The β-N-acetylglucosaminidases NAG1 and NAG2 are essential for growth of Trichoderma atroviride on chitin. FEBS J 276:5137–5148 [View Article][PubMed]
    [Google Scholar]
  34. Lu X., Sun J., Nimtz M., Wissing J., Zeng A. P., Rinas U. ( 2010). The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9:23–36 [View Article][PubMed]
    [Google Scholar]
  35. Martens-Uzunova E. S., Schaap P. J. ( 2009). Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet Biol 46:Suppl. 1S170–S179 [View Article][PubMed]
    [Google Scholar]
  36. Moretti S., Armougom F., Wallace I. M., Higgins D. G., Jongeneel C. V., Notredame C. ( 2007). The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35:Web Server issueW645–W648 [View Article][PubMed]
    [Google Scholar]
  37. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. ( 1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [View Article][PubMed]
    [Google Scholar]
  38. Pel H. J., de Winde J. H., Archer D. B., Dyer P. S., Hofmann G., Schaap P. J., Turner G., de Vries R. P., Albang R. & other authors ( 2007). Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231 [View Article][PubMed]
    [Google Scholar]
  39. Perrakis A., Tews I., Dauter Z., Oppenheim A. B., Chet I., Wilson K. S., Vorgias C. E. ( 1994). Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2:1169–1180 [View Article][PubMed]
    [Google Scholar]
  40. Rush C. L., Schüttelkopf A. W., Hurtado-Guerrero R., Blair D. E., Ibrahim A. F., Desvergnes S., Eggleston I. M., van Aalten D. M. ( 2010). Natural product-guided discovery of a fungal chitinase inhibitor. Chem Biol 17:1275–1281 [View Article][PubMed]
    [Google Scholar]
  41. Sambrook J., Frisch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schuster E., Dunn-Coleman N., Frisvad J. C., Van Dijck P. W. ( 2002). On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol 59:426–435 [View Article][PubMed]
    [Google Scholar]
  43. Seidl V. ( 2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42 [View Article]
    [Google Scholar]
  44. Seidl V., Huemer B., Seiboth B., Kubicek C. P. ( 2005). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939 [View Article][PubMed]
    [Google Scholar]
  45. Shin K. S., Kwon N. J., Kim Y. H., Park H. S., Kwon G. S., Yu J. H. ( 2009). Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans . Eukaryot Cell 8:738–746 [View Article][PubMed]
    [Google Scholar]
  46. Stals I., Samyn B., Sergeant K., White T., Hoorelbeke K., Coorevits A., Devreese B., Claeyssens M., Piens K. ( 2010). Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina . FEMS Microbiol Lett 303:9–17 [View Article][PubMed]
    [Google Scholar]
  47. Tamura K., Dudley J., Nei M., Kumar S. ( 2007). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  48. Terwisscha van Scheltinga A. C., Kalk K. H., Beintema J. J., Dijkstra B. W. ( 1994). Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure 2:1181–1189 [View Article][PubMed]
    [Google Scholar]
  49. van Aalten D. M., Komander D., Synstad B., Gåseidnes S., Peter M. G., Eijsink V. G. ( 2001). Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A 98:8979–8984 [View Article][PubMed]
    [Google Scholar]
  50. van den Berg R. A., Braaksma M., van der Veen D., van der Werf M. J., Punt P. J., van der Oost J., de Graaff L. H. ( 2010). Identification of modules in Aspergillus niger by gene co-expression network analysis. Fungal Genet Biol 47:539–550 [View Article][PubMed]
    [Google Scholar]
  51. White S., McIntyre M., Berry D. R., McNeil B. ( 2002). The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22:1–14 [View Article][PubMed]
    [Google Scholar]
  52. Yamazaki H., Yamazaki D., Takaya N., Takagi M., Ohta A., Horiuchi H. ( 2007). A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans . Curr Genet 51:89–98 [View Article][PubMed]
    [Google Scholar]
  53. Yamazaki H., Tanaka A., Kaneko J., Ohta A., Horiuchi H. ( 2008). Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet Biol 45:963–972 [View Article][PubMed]
    [Google Scholar]
  54. Yuan X. L., van der Kaaij R. M., van den Hondel C. A., Punt P. J., van der Maarel M. J., Dijkhuizen L., Ram A. F. ( 2008). Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 279:545–561 [View Article][PubMed]
    [Google Scholar]
  55. Zdobnov E. M., Apweiler R. ( 2001). InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848 [View Article][PubMed]
    [Google Scholar]
  56. Zees A. C., Pyrpassopoulos S., Vorgias C. E. ( 2009). Insights into the role of the (alpha+beta) insertion in the TIM-barrel catalytic domain, regarding the stability and the enzymatic activity of chitinase A from Serratia marcescens . Biochim Biophys Acta 1794:23–31[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054650-0
Loading
/content/journal/micro/10.1099/mic.0.054650-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed