1887

Abstract

An endophytic sp. (strain CI-4) producing a wide spectrum of volatile organic compounds (VOCs), including 1,8-cineole, 1-methyl-1,4-cyclohexadiene and cyclohexane, 1,2,4-tris(methylene), was selected as a candidate for the modulation of VOC production. This was done in order to learn if the production of these and other VOCs can be affected by using agents that may modulate the epigenetics of the fungus. Many of the VOCs made by this organism are of interest because of their high energy densities and thus the potential they might have as Mycodiesel fuels. Strain CI-4 was exposed to the epigenetic modulators suberoylanilide hydroxamic acid (SAHA, a histone deacetylase) and 5-azacytidine (AZA, a DNA methyltransferase inhibitor). After these treatments the organism displayed striking cultural changes, including variations in pigmentation, growth rates and odour, in addition to significant differences in the bioactivities of the VOCs. The resulting variants were designated CI4-B, CI4-AZA and CI4-SAHA. GC/MS analyses of the VOCs produced by the variants showed considerable variation, with the emergence of several compounds not previously observed in the wild-type, particularly an array of tentatively identified terpenes such as α-thujene, sabinene, γ-terpinene, α-terpinolene and β-selinene, in addition to several primary and secondary alkanes, alkenes, organic acids and derivatives of benzene. Proton transfer reaction mass spectroscopic analyses showed a marked increase in the ratio of ethanol (mass 47) to the total mass of all other ionizable VOCs, from ~0.6 in the untreated strain CI-4 to ~0.8 in CI-4 grown in the presence of AZA. Strain CI4-B was created by exposure of the fungus to 100 µM SAHA; upon removal of the epigenetic modulator from the culture medium, it did not revert to the wild-type phenotype. Results of this study have implications for understanding why there may be a wide range of VOCs found in various isolates of this fungus in nature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054643-0
2012-02-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/465.html?itemId=/content/journal/micro/10.1099/mic.0.054643-0&mimeType=html&fmt=ahah

References

  1. Bergmann S., Schümann J., Scherlach K., Lange C., Brakhage A. A., Hertweck C.. ( 2007;). Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. . Nat Chem Biol 3:, 213–217. [CrossRef][PubMed]
    [Google Scholar]
  2. Birch P. R. J., Sims P. F. G., Broda P. J.. ( 1998;). A reporter system for analysis of regulatable promoter functions in the basidiomycete fungus Phanerochaete chrysosporium.. J Appl Microbiol 85:, 417–424. [CrossRef][PubMed]
    [Google Scholar]
  3. Bok J. W., Hoffmeister D., Maggio-Hall L. A., Murillo R., Glasner J. D., Keller N. P.. ( 2006;). Genomic mining for Aspergillus natural products. . Chem Biol 13:, 31–37. [CrossRef][PubMed]
    [Google Scholar]
  4. Bok J. W., Chiang Y.-M., Szewczyk E., Reyes-Dominguez Y., Davidson A. D., Sanchez J. F., Lo H.-C., Watanabe K., Strauss J.. & other authors ( 2009;). Chromatin-level regulation of biosynthetic gene clusters. . Nat Chem Biol 5:, 462–464. [CrossRef][PubMed]
    [Google Scholar]
  5. Booth E., Strobel G., Knighton B., Sears J., Geary B., Avci R.. ( 2011;). A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives. . Biotechnol Lett 33:, 1963–1972. [CrossRef][PubMed]
    [Google Scholar]
  6. Brosch G., Loidl P., Graessle S.. ( 2008;). Histone modifications and chromatin dynamics: a focus on filamentous fungi. . FEMS Microbiol Rev 32:, 409–439. [CrossRef][PubMed]
    [Google Scholar]
  7. Bunge M., Araghipour N., Mikoviny T., Dunkl J., Schnitzhofer R., Hansel A., Schinner F., Wisthaler A., Margesin R., Märk T. D.. ( 2008;). On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. . Appl Environ Microbiol 74:, 2179–2186. [CrossRef][PubMed]
    [Google Scholar]
  8. Challis G. L.. ( 2008;). Genome mining for novel natural product discovery. . J Med Chem 51:, 2618–2628. [CrossRef][PubMed]
    [Google Scholar]
  9. Cheng J. C., Matsen C. B., Gonzales F. A., Ye W., Greer S., Marquez V. E., Jones P. A., Selker E. U.. ( 2003;). Inhibition of DNA methylation and reactivation of silenced genes by zebularine. . J Natl Cancer Inst 95:, 399–409. [CrossRef][PubMed]
    [Google Scholar]
  10. Cichewicz R. H.. ( 2010;). Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. . Nat Prod Rep 27:, 11–22. [CrossRef][PubMed]
    [Google Scholar]
  11. Daisy B. H., Strobel G. A., Castillo U., Ezra D., Sears J., Weaver D. K., Runyon J. B.. ( 2002;). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. . Microbiology 148:, 3737–3741.[PubMed]
    [Google Scholar]
  12. Ezra D., Hess W. M., Strobel G. A.. ( 2004a;). New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. . Microbiology 150:, 4023–4031. [CrossRef][PubMed]
    [Google Scholar]
  13. Ezra D., Jasper J., Rogers T., Knighton B., Grimsrud E., Strobel G. A.. ( 2004b;). Proton transfer reaction-mass spectroscopy as a technique to measure volatile emissions of Muscodor albus. . Plant Sci 166:, 1471–1477. [CrossRef]
    [Google Scholar]
  14. Griffin M. A., Spakowicz D. J., Gianoulis T. A., Strobel S. A.. ( 2010;). Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. . Microbiology 156:, 3814–3829. [CrossRef][PubMed]
    [Google Scholar]
  15. Hawksworth D. L.. ( 2001;). The magnitude of fungal diversity: the 1.5 million species estimate revisited. . Mycol Res 105:, 1422–1432. [CrossRef]
    [Google Scholar]
  16. Henrikson J. C., Hoover A. R., Joyner P. M., Cichewicz R. H.. ( 2009;). A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger.. Org Biomol Chem 7:, 435–438. [CrossRef][PubMed]
    [Google Scholar]
  17. Heywood V. H.. (editor) ( 1995;). Global Biodiversity Assessment. Cambridge, UK:: Cambridge University Press;.
    [Google Scholar]
  18. Knappe T. A., Linne U., Zirah S., Rebuffat S., Xie X., Marahiel M. A.. ( 2008;). Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. . J Am Chem Soc 130:, 11446–11454. [CrossRef][PubMed]
    [Google Scholar]
  19. Lindinger W., Hansel A., Jordan A.. ( 1998;). On-line monitoring of volatile organic compounds at pptv levels by means of Proton-Transfer-Reactions Mass Spectrometry (PTR-MS): medical applications, food control and environmental research. . Int J Mass Spectrom Ion Process 173:, 191–241. [CrossRef]
    [Google Scholar]
  20. Mooibroek H., Kuipers A. G. J., Sietsma J. H., Punt P. J., Wessels J. G. H.. ( 1990;). Introduction of hygromycin B resistance into Schizophyllum commune: preferential methylation of donor DNA. . Mol Gen Genet 222:, 41–48.[PubMed]
    [Google Scholar]
  21. Schroeckh V., Scherlach K., Nützmann H. W., Shelest E., Schmidt-Heck W., Schuemann J., Martin K., Hertweck C., Brakhage A. A.. ( 2009;). Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans.. Proc Natl Acad Sci U S A 106:, 14558–14563. [CrossRef][PubMed]
    [Google Scholar]
  22. Shwab E. K., Bok J. W., Tribus M., Galehr J., Graessle S., Keller N. P.. ( 2007;). Histone deacetylase activity regulates chemical diversity in Aspergillus.. Eukaryot Cell 6:, 1656–1664. [CrossRef][PubMed]
    [Google Scholar]
  23. Singh S. K., Strobel G. A., Knighton B., Geary B., Sears J., Ezra D.. ( 2011;). An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. . Microb Ecol 61:, 729–739. [CrossRef][PubMed]
    [Google Scholar]
  24. Strobel G.. ( 2006;). Harnessing endophytes for industrial microbiology. . Curr Opin Microbiol 9:, 240–244. [CrossRef][PubMed]
    [Google Scholar]
  25. Strobel G. A., Dirkse E., Sears J., Markworth C.. ( 2001;). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. . Microbiology 147:, 2943–2950.[PubMed]
    [Google Scholar]
  26. Strobel G. A., Knighton B., Kluck K., Ren Y., Livinghouse T., Griffin M., Spakowicz D., Sears J.. ( 2008;). The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). . Microbiology 154:, 3319–3328. [CrossRef][PubMed]
    [Google Scholar]
  27. Strobel G., Singh S. K., Riyaz-Ul-Hassan S., Mitchell A. M., Geary B., Sears J.. ( 2011;). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. . FEMS Microbiol Lett 320:, 87–94. [CrossRef][PubMed]
    [Google Scholar]
  28. Tomsheck A. R., Strobel G. A., Booth E., Geary B., Spakowicz D., Knighton B., Floerchinger C., Sears J., Liarzi O., Ezra D.. ( 2010;). Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. . Microb Ecol 60:, 903–914. [CrossRef][PubMed]
    [Google Scholar]
  29. Wheatley R. E.. ( 2002;). The consequences of volatile organic compound mediated bacterial and fungal interactions. . Antonie van Leeuwenhoek 81:, 357–364. [CrossRef][PubMed]
    [Google Scholar]
  30. Williams R. B., Henrikson J. C., Hoover A. R., Lee A. E., Cichewicz R. H.. ( 2008;). Epigenetic remodeling of the fungal secondary metabolome. . Org Biomol Chem 6:, 1895–1897. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054643-0
Loading
/content/journal/micro/10.1099/mic.0.054643-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error