1887

Abstract

The use of dental implants to treat tooth loss has increased rapidly over recent years. ‘Smooth’ implants showing high long-term success rates have successively been replaced by implants with rougher surfaces, designed to stimulate rapid osseointegration and promote tissue healing. If exposed in the oral cavity, rougher surfaces may promote bacterial adhesion leading to formation of microbial biofilms which can induce peri-implant inflammation. is an early colonizer of oral surfaces and has been recovered from titanium surfaces . The purpose of this study was to examine the adherence of clinical strains of to titanium with smooth or moderately rough surface topography and to determine the effect of a saliva- or serum-derived coating on this process. Adherence was studied using a flow-cell system with confocal laser scanning microscopy, while putative adhesins were analysed using proteomics of bacterial cell wall proteins. This showed that adherence to moderately rough surfaces was greater than to smooth surfaces. Serum did not promote binding of any of the studied strains to titanium, whereas a saliva coating increased adherence in two of three strains tested. The higher level of adherence to the moderately rough surfaces was maintained even in the presence of a saliva coating. The strains that bound to saliva expressed an LPXTG-linked protein which was not present in the non-adherent strain. Thus strains of differ in their capacity to bind to saliva-coated titanium and we propose that this is due to differential expression of a novel adhesin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054536-0
2012-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/390.html?itemId=/content/journal/micro/10.1099/mic.0.054536-0&mimeType=html&fmt=ahah

References

  1. Ahn S. J., Kho H. S., Lee S. W., Nahm D. S.. ( 2002;). Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets. . J Dent Res 81:, 411–415. [CrossRef][PubMed]
    [Google Scholar]
  2. Anselme K., Bigerelle M.. ( 2005;). Topography effects of pure titanium substrates on human osteoblast long-term adhesion. . Acta Biomater 1:, 211–222. [CrossRef][PubMed]
    [Google Scholar]
  3. Astrand P., Ahlqvist J., Gunne J., Nilson H.. ( 2008;). Implant treatment of patients with edentulous jaws: a 20-year follow-up. . Clin Implant Dent Relat Res 10:, 207–217.[PubMed]
    [Google Scholar]
  4. Bürgers R., Gerlach T., Hahnel S., Schwarz F., Handel G., Gosau M.. ( 2010;). In vivo and in vitro biofilm formation on two different titanium implant surfaces. . Clin Oral Implants Res 21:, 156–164. [CrossRef][PubMed]
    [Google Scholar]
  5. Buser D., Nydegger T., Oxland T., Cochran D. L., Schenk R. K., Hirt H. P., Snétivy D., Nolte L. P.. ( 1999;). Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. . J Biomed Mater Res 45:, 75–83. [CrossRef][PubMed]
    [Google Scholar]
  6. Chávez de Paz L. E.. ( 2009;). Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. . Appl Environ Microbiol 75:, 1734–1739. [CrossRef][PubMed]
    [Google Scholar]
  7. Davies J. R., Svensäter G., Herzberg M. C.. ( 2009;). Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii.. Microbiology 155:, 1977–1988. [CrossRef][PubMed]
    [Google Scholar]
  8. Edgerton M., Lo S. E., Scannapieco F. A.. ( 1996;). Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci. . Int J Oral Maxillofac Implants 11:, 443–449.[PubMed]
    [Google Scholar]
  9. Elter C., Heuer W., Demling A., Hannig M., Heidenblut T., Bach F. W., Stiesch-Scholz M.. ( 2008;). Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. . Int J Oral Maxillofac Implants 23:, 327–334.[PubMed]
    [Google Scholar]
  10. Förch R., Schönherr H., Jenkins A. T. A.. (editors) ( 2009;). Appendix C: Contact angle goniometry. . In Surface Design: Applications in Bioscience and Nanotechnology, pp. 471–473. Weinheim, Germany:: Wiley-VCH;. [CrossRef]
    [Google Scholar]
  11. Hoshino T., Fujiwara T., Kilian M.. ( 2005;). Use of phylogenetic and phenotypic analyses to identify nonhemolytic streptococci isolated from bacteremic patients. . J Clin Microbiol 43:, 6073–6085. [CrossRef][PubMed]
    [Google Scholar]
  12. Jakubovics N. S., Kolenbrander P. E.. ( 2010;). The road to ruin: the formation of disease-associated oral biofilms. . Oral Dis 16:, 729–739. [CrossRef][PubMed]
    [Google Scholar]
  13. Jakubovics N. S., Kerrigan S. W., Nobbs A. H., Strömberg N., van Dolleweerd C. J., Cox D. M., Kelly C. G., Jenkinson H. F.. ( 2005;). Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. . Infect Immun 73:, 6629–6638. [CrossRef][PubMed]
    [Google Scholar]
  14. Kolenbrander P. E., Palmer R. J. Jr, Periasamy S., Jakubovics N. S.. ( 2010;). Oral multispecies biofilm development and the key role of cell-cell distance. . Nat Rev Microbiol 8:, 471–480. [CrossRef][PubMed]
    [Google Scholar]
  15. Lekholm U., Gröndahl K., Jemt T.. ( 2006;). Outcome of oral implant treatment in partially edentulous jaws followed 20 years in clinical function. . Clin Implant Dent Relat Res 8:, 178–186. [CrossRef][PubMed]
    [Google Scholar]
  16. Leonhardt A., Olsson J., Dahlén G.. ( 1995;). Bacterial colonization on titanium, hydroxyapatite, and amalgam surfaces in vivo.. J Dent Res 74:, 1607–1612. [CrossRef][PubMed]
    [Google Scholar]
  17. Lima E. M., Koo H., Vacca Smith A. M., Rosalen P. L., Del Bel Cury A. A.. ( 2008;). Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. . Clin Oral Implants Res 19:, 780–785. [CrossRef][PubMed]
    [Google Scholar]
  18. Mei L., Busscher H. J., van der Mei H. C., Ren Y.. ( 2011;). Influence of surface roughness on streptococcal adhesion forces to composite resins. . Dent Mater 27:, 770–778. [CrossRef][PubMed]
    [Google Scholar]
  19. Meier R., Hauser-Gerspach I., Lüthy H., Meyer J.. ( 2008;). Adhesion of oral streptococci to all-ceramics dental restorative materials in vitro.. J Mater Sci Mater Med 19:, 3249–3253. [CrossRef][PubMed]
    [Google Scholar]
  20. Müller R., Gröger G., Hiller K.-A., Schmalz G., Ruhl S.. ( 2007;). Fluorescence-based bacterial overlay method for simultaneous in situ quantification of surface-attached bacteria. . Appl Environ Microbiol 73:, 2653–2660. [CrossRef][PubMed]
    [Google Scholar]
  21. Murray P. A., Prakobphol A., Lee T., Hoover C. I., Fisher S. J.. ( 1992;). Adherence of oral streptococci to salivary glycoproteins. . Infect Immun 60:, 31–38.[PubMed]
    [Google Scholar]
  22. Nikawa H., Egusa H., Yamashiro H., Nishimura M., Makihira S., Jin C., Fukushima H., Hamada T.. ( 2006;). The effect of saliva or serum on bacterial and Candida albicans colonization on type I collagen. . J Oral Rehabil 33:, 767–774. [CrossRef][PubMed]
    [Google Scholar]
  23. Palmer R. J. Jr, Kazmerzak K., Hansen M. C., Kolenbrander P. E.. ( 2001;). Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. . Infect Immun 69:, 5794–5804. [CrossRef][PubMed]
    [Google Scholar]
  24. Paulsson M., Kober M., Freij-Larsson C., Stollenwerk M., Wesslén B., Ljungh A.. ( 1993;). Adhesion of staphylococci to chemically modified and native polymers, and the influence of preadsorbed fibronectin, vitronectin and fibrinogen. . Biomaterials 14:, 845–853. [CrossRef][PubMed]
    [Google Scholar]
  25. Pereira da Silva C. H., Vidigal G. M. Jr, de Uzeda M., de Almeida Soares G.. ( 2005;). Influence of titanium surface roughness on attachment of Streptococcus sanguis: an in vitro study. . Implant Dent 14:, 88–93. [CrossRef][PubMed]
    [Google Scholar]
  26. Pratt-Terpstra I. H., Weerkamp A. H., Busscher H. J.. ( 1989;). The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free-energies. . J Dent Res 68:, 463–467. [CrossRef][PubMed]
    [Google Scholar]
  27. Quirynen M., Bollen C. M.. ( 1995;). The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. . J Clin Periodontol 22:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  28. Rogers J. D., Palmer R. J. Jr, Kolenbrander P. E., Scannapieco F. A.. ( 2001;). Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. . Infect Immun 69:, 7046–7056. [CrossRef][PubMed]
    [Google Scholar]
  29. Schachtele C. R., Nobbs A., Zhang Y., Costalonga M., Herzberg M. C.. ( 2007;). Oral streptococci: commensals and opportunistic pathogens. . In The Molecular Biology of Streptococci, pp. 411–462. Edited by Hakenbeck R., Chhatwal S... Norfolk, UK:: Horizon Scientific Press;.
    [Google Scholar]
  30. Serino G., Ström C.. ( 2009;). Peri-implantitis in partially edentulous patients: association with inadequate plaque control. . Clin Oral Implants Res 20:, 169–174. [CrossRef][PubMed]
    [Google Scholar]
  31. Stout K. J., Sullivan P. J., Dong W. P., Mainsah E., Luo N., Mathia T., Zahouani H.. ( 1993;). The development of methods for characterisation of roughness in three dimensions. EUR 15178 EN of commission of the European communities, pp. 230–231. Birmingham, UK:: University of Birmingham;.
    [Google Scholar]
  32. Wall I., Donos N., Carlqvist K., Jones F., Brett P.. ( 2009;). Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro.. Bone 45:, 17–26. [CrossRef][PubMed]
    [Google Scholar]
  33. Welin-Neilands J., Svensäter G.. ( 2007;). Acid tolerance of biofilm cells of Streptococcus mutans.. Appl Environ Microbiol 73:, 5633–5638. [CrossRef][PubMed]
    [Google Scholar]
  34. Wennerberg A., Ektessabi A., Albrektsson T., Johansson C., Andersson B.. ( 1997;). A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. . Int J Oral Maxillofac Implants 12:, 486–494.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054536-0
Loading
/content/journal/micro/10.1099/mic.0.054536-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error