-Amino acid oxidase of the fungus displays substrate preference towards glutamate Free

Abstract

Catabolism of amino acids is a central process in cellular nitrogen turnover, but only a few of the mechanisms involved have been described from basidiomycete fungi. This study identified one such mechanism, the -amino acid oxidase (Lao1) enzyme of , by 2D gel separation and MS. We determined genomic DNA sequences of and part of its upstream gene, a putative pyruvate decarboxylase (), and cloned the cDNA of . The two genes were also identified and annotated from the genome of . The and gene structures were conserved between the two fungi. The intergenic region of possessed putative duplications not detected in . Lao1 sequences possessed dinucleotide-binding motifs typical for flavoproteins. Lao1 was less than 23 % identical to Lao sequences described previously. Recombinant Lao1 of was expressed in , purified and refolded with SDS to gain catalytic activity. The enzyme possessed broad substrate specificity: 37 -amino acids or derivatives served as effective substrates. The highest activities were recorded with -glutamate, but positively charged and aromatic amino acids were also accepted. Michaelis constants for six amino acids varied from 0.5 to 6.7 mM. We have thus characterized a novel type of Lao-enzyme and its gene from the basidiomycete fungus .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054486-0
2012-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/272.html?itemId=/content/journal/micro/10.1099/mic.0.054486-0&mimeType=html&fmt=ahah

References

  1. Bailey T. L., Elkan C. ( 1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology28–36
    [Google Scholar]
  2. Bender A. E., Krebs H. A. ( 1950). The oxidation of various synthetic α-amino-acids by mammalian d-amino-acid oxidase, l-amino-acid oxidase of cobra venom and the l- and d-amino-acid oxidases of Neurospora crassa. . Biochem J 46:210–219[PubMed]
    [Google Scholar]
  3. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. ( 2004). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [View Article][PubMed]
    [Google Scholar]
  4. Bockholt R., Masepohl B., Kruft V., Wittmann-Liebold B., Pistorius E. K. ( 1995). Partial amino acid sequence of an L-amino acid oxidase from the cyanobacterium Synechococcus PCC6301, cloning and DNA sequence analysis of the aoxA gene. Biochim Biophys Acta 1264:289–293[PubMed] [CrossRef]
    [Google Scholar]
  5. Böhmer A., Müller A., Passarge M., Liebs P., Honeck H., Müller H. G. ( 1989). A novel l-glutamate oxidase from Streptomyces endus. Purification and properties. Eur J Biochem 182:327–332 [View Article][PubMed]
    [Google Scholar]
  6. Brizio C., Brandsch R., Bufano D., Pochini L., Indiveri C., Barile M. ( 2004). Over-expression in Escherichia coli, functional characterization and refolding of rat dimethylglycine dehydrogenase. Protein Expr Purif 37:434–442 [View Article][PubMed]
    [Google Scholar]
  7. Chalot M., Blaudez D., Brun A. ( 2006). Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266 [View Article][PubMed]
    [Google Scholar]
  8. Chavan S. S., Tian W. Z., Hsueh K., Jawaheer D., Gregersen P. K., Chu C. C. ( 2002). Characterization of the human homolog of the IL-4 induced gene-1 (Fig1). Biochim Biophys Acta 1576:70–80[PubMed] [CrossRef]
    [Google Scholar]
  9. Chou K. C., Shen H. B. ( 2007). Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734 [View Article][PubMed]
    [Google Scholar]
  10. Davis M. A., Askin M. C., Hynes M. J. ( 2005). Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans. . Appl Environ Microbiol 71:3551–3555 [View Article][PubMed]
    [Google Scholar]
  11. Dighton J. ( 2003). Fungi in Ecosystem Processes New York: M. Dekker; [View Article]
    [Google Scholar]
  12. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. ( 2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016 [View Article][PubMed]
    [Google Scholar]
  13. Faust A., Niefind K., Hummel W., Schomburg D. ( 2007). The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J Mol Biol 367:234–248 [View Article][PubMed]
    [Google Scholar]
  14. Finlay R. D. ( 2008). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126 [View Article][PubMed]
    [Google Scholar]
  15. Fraaije M. W., Mattevi A. ( 2000). Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25:126–132 [View Article][PubMed]
    [Google Scholar]
  16. Gay G., Marmeisse R., Fouillet P., Bouletreau M., Debaud J. C. ( 1993). Genotype/nutrition interactions in the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol 123:335–343 [View Article]
    [Google Scholar]
  17. Geueke B., Hummel W. ( 2002). A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzyme Microb Technol 31:77–87 [View Article]
    [Google Scholar]
  18. Hafner E. W., Wellner D. ( 1971). Demonstration of imino acids as products of the reactions catalyzed by d- and L-amino acid oxidases. Proc Natl Acad Sci U S A 68:987–991 [View Article][PubMed]
    [Google Scholar]
  19. Hanks J. N., Hearnes J. M., Gathman A. C., Lilly W. W. ( 2003). Nitrogen starvation-induced changes in amino acid and free ammonium pools in Schizophyllum commune colonies. Curr Microbiol 47:444–449 [View Article][PubMed]
    [Google Scholar]
  20. Hayes M. B., Wellner D. ( 1969). Microheterogeneity of L-amino acid oxidase. Separation of multiple components by polyacrylamide gel electrofucusing. J Biol Chem 244:6636–6644[PubMed]
    [Google Scholar]
  21. Heinonsalo J., Jørgensen K. S., Sen R. ( 2001). Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol 36:73–84 [View Article][PubMed]
    [Google Scholar]
  22. Jones D. L., Kielland K. ( 2002). Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem 34:209–219 [View Article]
    [Google Scholar]
  23. Kel A. E., Gössling E., Reuter I., Cheremushkin E., Kel-Margoulis O. V., Wingender E. ( 2003). MATCH: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31:3576–3579 [View Article][PubMed]
    [Google Scholar]
  24. Kitani Y., Tsukamoto C., Zhang G., Nagai H., Ishida M., Ishizaki S., Shimakura K., Shiomi K., Nagashima Y. ( 2007). Identification of an antibacterial protein as L-amino acid oxidase in the skin mucus of rockfish Sebastes schlegeli. . FEBS J 274:125–136 [View Article][PubMed]
    [Google Scholar]
  25. Lipson D. A., Bowman W. D., Monson R. K. ( 1996). Luxury uptake and storage of nitrogen in the rhizomatous alpine herb, Bistorta bistortoides. . Ecology 77:1277–1285 [View Article]
    [Google Scholar]
  26. Macheroux P., Seth O., Bollschweiler C., Schwarz M., Kurfürst M., Au L. C., Ghisla S. ( 2001). L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem 268:1679–1686 [View Article][PubMed]
    [Google Scholar]
  27. Marmeisse R., Guidot A., Gay G., Lambilliotte K., Sentenac H., Combier J. P., Melayah D., Fraissinet-Tachet L., Debaud J. C. ( 2004). Hebeloma cylindrosporum – a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol 163:481–498 [CrossRef]
    [Google Scholar]
  28. Martin F., Aerts A., Ahrén D., Brun A., Danchin E. G. J., Duchaussoy F., Gibon J., Kohler A., Lindquist E. & other authors ( 2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92 [View Article][PubMed]
    [Google Scholar]
  29. Mason J. M., Naidu M. D., Barcia M., Porti D., Chavan S. S., Chu C. C. ( 2004). IL-4-induced gene-1 is a leukocyte L-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J Immunol 173:4561–4567[PubMed] [CrossRef]
    [Google Scholar]
  30. Morgenstern B. ( 2004). DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Res 32:Web Server issueW33–W36 [View Article][PubMed]
    [Google Scholar]
  31. Nehls U. ( 2008). Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108 [View Article][PubMed]
    [Google Scholar]
  32. Niedermann D. M., Lerch K. ( 1990). Molecular cloning of the L-amino-acid oxidase gene from Neurospora crassa. . J Biol Chem 265:17246–17251[PubMed]
    [Google Scholar]
  33. Nuutinen J. T., Timonen S. ( 2008). Identification of nitrogen mineralization enzymes, L-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. . Mycol Res 112:1453–1464 [View Article][PubMed]
    [Google Scholar]
  34. O'Brien H. E., Parrent J. L., Jackson J. A., Moncalvo J. M., Vilgalys R. ( 2005). Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550 [View Article][PubMed]
    [Google Scholar]
  35. Pawelek P. D., Cheah J., Coulombe R., Macheroux P., Ghisla S., Vrielink A. ( 2000). The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J 19:4204–4215 [View Article][PubMed]
    [Google Scholar]
  36. Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S. ( 1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567 [View Article][PubMed]
    [Google Scholar]
  37. Pierleoni A., Martelli P. L., Fariselli P., Casadio R. ( 2006). BaCelLo: a balanced subcellular localization predictor. Bioinformatics 22:e408–e416 [View Article][PubMed]
    [Google Scholar]
  38. Ponnudurai G., Chung M. C. M., Tan N. H. ( 1994). Purification and properties of the L-amino acid oxidase from Malayan pit viper (Calloselasma rhodostoma) venom. Arch Biochem Biophys 313:373–378 [View Article][PubMed]
    [Google Scholar]
  39. Raibekas A. A., Massey V. ( 1998). Primary structure of the snake venom L-amino acid oxidase shows high homology with the mouse B cell interleukin 4-induced Fig1 protein. Biochem Biophys Res Commun 248:476–478 [View Article][PubMed]
    [Google Scholar]
  40. Read D. J., Perez-Moreno J. ( 2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?. New Phytol 157:475–492 [View Article]
    [Google Scholar]
  41. Rice P., Longden I., Bleasby A. ( 2000). EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277 [View Article][PubMed]
    [Google Scholar]
  42. Rothstein D. ( 2009). Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochem 92:201–215 [View Article]
    [Google Scholar]
  43. Schimel J. P., Bennett J. ( 2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602 [View Article]
    [Google Scholar]
  44. Shevchenko A., Wilm M., Vorm O., Mann M. ( 1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858 [View Article][PubMed]
    [Google Scholar]
  45. Stasyk T., Lutsik-Kordovsky M., Wernstedt C., Antonyuk V., Klyuchivska O., Souchelnytskyi S., Hellman U., Stoika R. ( 2010). A new highly toxic protein isolated from the death cap Amanita phalloides is an L-amino acid oxidase. FEBS J 277:1260–1269 [View Article][PubMed]
    [Google Scholar]
  46. Sun Y. P., Nonobe E., Kobayashi Y., Kuraishi T., Aoki F., Yamamoto K., Sakai S. ( 2002). Characterization and expression of L-amino acid oxidase of mouse milk. J Biol Chem 277:19080–19086 [View Article][PubMed]
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  48. Ulrich C. E., Gathman A. C., Lilly W. W. ( 2007). Amino acid pool composition of the basidiomycete Coprinus cinereus. . Can J Microbiol 53:1278–1281 [View Article][PubMed]
    [Google Scholar]
  49. Vesterholt J. ( 2005). The genus Hebeloma. Fungi of Northern Europe Copenhagen, Denmark: Danish Mycological Society;
    [Google Scholar]
  50. Wallace I. M., O’Sullivan O., Higgins D. G., Notredame C. ( 2006). M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 34:1692–1699 [View Article][PubMed]
    [Google Scholar]
  51. Waterhouse A. M., Procter J. B., Martin D. M. A., Clamp M., Barton G. J. ( 2009). Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191 [View Article][PubMed]
    [Google Scholar]
  52. Werdin-Pfisterer N. R., Kielland K., Boone R. D. ( 2009). Soil amino acid composition across a boreal forest successional sequence. Soil Biol Biochem 41:1210–1220 [View Article]
    [Google Scholar]
  53. Wierenga R. K., Terpstra P., Hol W. G. J. ( 1986). Prediction of the occurrence of the ADP-binding β α β-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107 [View Article][PubMed]
    [Google Scholar]
  54. Yang H. C., Johnson P. M., Ko K. C., Kamio M., Germann M. W., Derby C. D., Tai P. C. ( 2005). Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica. . J Exp Biol 208:3609–3622 [View Article][PubMed]
    [Google Scholar]
  55. Yu C. S., Chen Y. C., Lu C. H., Hwang J. K. ( 2006). Prediction of protein subcellular localization. Proteins 64:643–651 [View Article][PubMed]
    [Google Scholar]
  56. Zhong S.-R., Jin Y., Wu J.-B., Jia Y.-H., Xu G.-L., Wang G.-C., Xiong Y.-L., Lu Q.-M. ( 2009). Purification and characterization of a new L-amino acid oxidase from Daboia russellii siamensis venom. Toxicon 54:763–771 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054486-0
Loading
/content/journal/micro/10.1099/mic.0.054486-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed