1887

Abstract

Catabolism of amino acids is a central process in cellular nitrogen turnover, but only a few of the mechanisms involved have been described from basidiomycete fungi. This study identified one such mechanism, the -amino acid oxidase (Lao1) enzyme of , by 2D gel separation and MS. We determined genomic DNA sequences of and part of its upstream gene, a putative pyruvate decarboxylase (), and cloned the cDNA of . The two genes were also identified and annotated from the genome of . The and gene structures were conserved between the two fungi. The intergenic region of possessed putative duplications not detected in . Lao1 sequences possessed dinucleotide-binding motifs typical for flavoproteins. Lao1 was less than 23 % identical to Lao sequences described previously. Recombinant Lao1 of was expressed in , purified and refolded with SDS to gain catalytic activity. The enzyme possessed broad substrate specificity: 37 -amino acids or derivatives served as effective substrates. The highest activities were recorded with -glutamate, but positively charged and aromatic amino acids were also accepted. Michaelis constants for six amino acids varied from 0.5 to 6.7 mM. We have thus characterized a novel type of Lao-enzyme and its gene from the basidiomycete fungus .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054486-0
2012-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/272.html?itemId=/content/journal/micro/10.1099/mic.0.054486-0&mimeType=html&fmt=ahah

References

  1. Bailey T. L., Elkan C.. ( 1994;). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology28–36
    [Google Scholar]
  2. Bender A. E., Krebs H. A.. ( 1950;). The oxidation of various synthetic α-amino-acids by mammalian d-amino-acid oxidase, l-amino-acid oxidase of cobra venom and the l- and d-amino-acid oxidases of Neurospora crassa. . Biochem J46:210–219[PubMed]
    [Google Scholar]
  3. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. ( 2004;). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795 [CrossRef][PubMed]
    [Google Scholar]
  4. Bockholt R., Masepohl B., Kruft V., Wittmann-Liebold B., Pistorius E. K.. ( 1995;). Partial amino acid sequence of an L-amino acid oxidase from the cyanobacterium Synechococcus PCC6301, cloning and DNA sequence analysis of the aoxA gene. Biochim Biophys Acta1264:289–293[PubMed][CrossRef]
    [Google Scholar]
  5. Böhmer A., Müller A., Passarge M., Liebs P., Honeck H., Müller H. G.. ( 1989;). A novel l-glutamate oxidase from Streptomyces endus. Purification and properties. Eur J Biochem182:327–332 [CrossRef][PubMed]
    [Google Scholar]
  6. Brizio C., Brandsch R., Bufano D., Pochini L., Indiveri C., Barile M.. ( 2004;). Over-expression in Escherichia coli, functional characterization and refolding of rat dimethylglycine dehydrogenase. Protein Expr Purif37:434–442 [CrossRef][PubMed]
    [Google Scholar]
  7. Chalot M., Blaudez D., Brun A.. ( 2006;). Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci11:263–266 [CrossRef][PubMed]
    [Google Scholar]
  8. Chavan S. S., Tian W. Z., Hsueh K., Jawaheer D., Gregersen P. K., Chu C. C.. ( 2002;). Characterization of the human homolog of the IL-4 induced gene-1 (Fig1). Biochim Biophys Acta1576:70–80[PubMed][CrossRef]
    [Google Scholar]
  9. Chou K. C., Shen H. B.. ( 2007;). Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res6:1728–1734 [CrossRef][PubMed]
    [Google Scholar]
  10. Davis M. A., Askin M. C., Hynes M. J.. ( 2005;). Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans. . Appl Environ Microbiol71:3551–3555 [CrossRef][PubMed]
    [Google Scholar]
  11. Dighton J.. ( 2003;). Fungi in Ecosystem Processes New York: M. Dekker; [CrossRef]
    [Google Scholar]
  12. Emanuelsson O., Nielsen H., Brunak S., von Heijne G.. ( 2000;). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol300:1005–1016 [CrossRef][PubMed]
    [Google Scholar]
  13. Faust A., Niefind K., Hummel W., Schomburg D.. ( 2007;). The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J Mol Biol367:234–248 [CrossRef][PubMed]
    [Google Scholar]
  14. Finlay R. D.. ( 2008;). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot59:1115–1126 [CrossRef][PubMed]
    [Google Scholar]
  15. Fraaije M. W., Mattevi A.. ( 2000;). Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci25:126–132 [CrossRef][PubMed]
    [Google Scholar]
  16. Gay G., Marmeisse R., Fouillet P., Bouletreau M., Debaud J. C.. ( 1993;). Genotype/nutrition interactions in the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol123:335–343 [CrossRef]
    [Google Scholar]
  17. Geueke B., Hummel W.. ( 2002;). A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzyme Microb Technol31:77–87 [CrossRef]
    [Google Scholar]
  18. Hafner E. W., Wellner D.. ( 1971;). Demonstration of imino acids as products of the reactions catalyzed by d- and L-amino acid oxidases. Proc Natl Acad Sci U S A68:987–991 [CrossRef][PubMed]
    [Google Scholar]
  19. Hanks J. N., Hearnes J. M., Gathman A. C., Lilly W. W.. ( 2003;). Nitrogen starvation-induced changes in amino acid and free ammonium pools in Schizophyllum commune colonies. Curr Microbiol47:444–449 [CrossRef][PubMed]
    [Google Scholar]
  20. Hayes M. B., Wellner D.. ( 1969;). Microheterogeneity of L-amino acid oxidase. Separation of multiple components by polyacrylamide gel electrofucusing. J Biol Chem244:6636–6644[PubMed]
    [Google Scholar]
  21. Heinonsalo J., Jørgensen K. S., Sen R.. ( 2001;). Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol36:73–84 [CrossRef][PubMed]
    [Google Scholar]
  22. Jones D. L., Kielland K.. ( 2002;). Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem34:209–219 [CrossRef]
    [Google Scholar]
  23. Kel A. E., Gössling E., Reuter I., Cheremushkin E., Kel-Margoulis O. V., Wingender E.. ( 2003;). MATCH: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res31:3576–3579 [CrossRef][PubMed]
    [Google Scholar]
  24. Kitani Y., Tsukamoto C., Zhang G., Nagai H., Ishida M., Ishizaki S., Shimakura K., Shiomi K., Nagashima Y.. ( 2007;). Identification of an antibacterial protein as L-amino acid oxidase in the skin mucus of rockfish Sebastes schlegeli. . FEBS J274:125–136 [CrossRef][PubMed]
    [Google Scholar]
  25. Lipson D. A., Bowman W. D., Monson R. K.. ( 1996;). Luxury uptake and storage of nitrogen in the rhizomatous alpine herb, Bistorta bistortoides. . Ecology77:1277–1285 [CrossRef]
    [Google Scholar]
  26. Macheroux P., Seth O., Bollschweiler C., Schwarz M., Kurfürst M., Au L. C., Ghisla S.. ( 2001;). L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem268:1679–1686 [CrossRef][PubMed]
    [Google Scholar]
  27. Marmeisse R., Guidot A., Gay G., Lambilliotte K., Sentenac H., Combier J. P., Melayah D., Fraissinet-Tachet L., Debaud J. C.. ( 2004;). Hebeloma cylindrosporum – a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol163:481–498[CrossRef]
    [Google Scholar]
  28. Martin F., Aerts A., Ahrén D., Brun A., Danchin E. G. J., Duchaussoy F., Gibon J., Kohler A., Lindquist E.. & other authors ( 2008;). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature452:88–92 [CrossRef][PubMed]
    [Google Scholar]
  29. Mason J. M., Naidu M. D., Barcia M., Porti D., Chavan S. S., Chu C. C.. ( 2004;). IL-4-induced gene-1 is a leukocyte L-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J Immunol173:4561–4567[PubMed][CrossRef]
    [Google Scholar]
  30. Morgenstern B.. ( 2004;). DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Res32:Web Server issueW33–W36 [CrossRef][PubMed]
    [Google Scholar]
  31. Nehls U.. ( 2008;). Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot59:1097–1108 [CrossRef][PubMed]
    [Google Scholar]
  32. Niedermann D. M., Lerch K.. ( 1990;). Molecular cloning of the L-amino-acid oxidase gene from Neurospora crassa. . J Biol Chem265:17246–17251[PubMed]
    [Google Scholar]
  33. Nuutinen J. T., Timonen S.. ( 2008;). Identification of nitrogen mineralization enzymes, L-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. . Mycol Res112:1453–1464 [CrossRef][PubMed]
    [Google Scholar]
  34. O'Brien H. E., Parrent J. L., Jackson J. A., Moncalvo J. M., Vilgalys R.. ( 2005;). Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol71:5544–5550 [CrossRef][PubMed]
    [Google Scholar]
  35. Pawelek P. D., Cheah J., Coulombe R., Macheroux P., Ghisla S., Vrielink A.. ( 2000;). The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J19:4204–4215 [CrossRef][PubMed]
    [Google Scholar]
  36. Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S.. ( 1999;). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20:3551–3567 [CrossRef][PubMed]
    [Google Scholar]
  37. Pierleoni A., Martelli P. L., Fariselli P., Casadio R.. ( 2006;). BaCelLo: a balanced subcellular localization predictor. Bioinformatics22:e408–e416 [CrossRef][PubMed]
    [Google Scholar]
  38. Ponnudurai G., Chung M. C. M., Tan N. H.. ( 1994;). Purification and properties of the L-amino acid oxidase from Malayan pit viper (Calloselasma rhodostoma) venom. Arch Biochem Biophys313:373–378 [CrossRef][PubMed]
    [Google Scholar]
  39. Raibekas A. A., Massey V.. ( 1998;). Primary structure of the snake venom L-amino acid oxidase shows high homology with the mouse B cell interleukin 4-induced Fig1 protein. Biochem Biophys Res Commun248:476–478 [CrossRef][PubMed]
    [Google Scholar]
  40. Read D. J., Perez-Moreno J.. ( 2003;). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?. New Phytol157:475–492 [CrossRef]
    [Google Scholar]
  41. Rice P., Longden I., Bleasby A.. ( 2000;). EMBOSS: the European molecular biology open software suite. Trends Genet16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  42. Rothstein D.. ( 2009;). Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochem92:201–215 [CrossRef]
    [Google Scholar]
  43. Schimel J. P., Bennett J.. ( 2004;). Nitrogen mineralization: challenges of a changing paradigm. Ecology85:591–602 [CrossRef]
    [Google Scholar]
  44. Shevchenko A., Wilm M., Vorm O., Mann M.. ( 1996;). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem68:850–858 [CrossRef][PubMed]
    [Google Scholar]
  45. Stasyk T., Lutsik-Kordovsky M., Wernstedt C., Antonyuk V., Klyuchivska O., Souchelnytskyi S., Hellman U., Stoika R.. ( 2010;). A new highly toxic protein isolated from the death cap Amanita phalloides is an L-amino acid oxidase. FEBS J277:1260–1269 [CrossRef][PubMed]
    [Google Scholar]
  46. Sun Y. P., Nonobe E., Kobayashi Y., Kuraishi T., Aoki F., Yamamoto K., Sakai S.. ( 2002;). Characterization and expression of L-amino acid oxidase of mouse milk. J Biol Chem277:19080–19086 [CrossRef][PubMed]
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  48. Ulrich C. E., Gathman A. C., Lilly W. W.. ( 2007;). Amino acid pool composition of the basidiomycete Coprinus cinereus. . Can J Microbiol53:1278–1281 [CrossRef][PubMed]
    [Google Scholar]
  49. Vesterholt J.. ( 2005;). The genus Hebeloma. Fungi of Northern Europe Copenhagen, Denmark: Danish Mycological Society;
    [Google Scholar]
  50. Wallace I. M., O’Sullivan O., Higgins D. G., Notredame C.. ( 2006;). M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res34:1692–1699 [CrossRef][PubMed]
    [Google Scholar]
  51. Waterhouse A. M., Procter J. B., Martin D. M. A., Clamp M., Barton G. J.. ( 2009;). Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics25:1189–1191 [CrossRef][PubMed]
    [Google Scholar]
  52. Werdin-Pfisterer N. R., Kielland K., Boone R. D.. ( 2009;). Soil amino acid composition across a boreal forest successional sequence. Soil Biol Biochem41:1210–1220 [CrossRef]
    [Google Scholar]
  53. Wierenga R. K., Terpstra P., Hol W. G. J.. ( 1986;). Prediction of the occurrence of the ADP-binding β α β-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol187:101–107 [CrossRef][PubMed]
    [Google Scholar]
  54. Yang H. C., Johnson P. M., Ko K. C., Kamio M., Germann M. W., Derby C. D., Tai P. C.. ( 2005;). Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica. . J Exp Biol208:3609–3622 [CrossRef][PubMed]
    [Google Scholar]
  55. Yu C. S., Chen Y. C., Lu C. H., Hwang J. K.. ( 2006;). Prediction of protein subcellular localization. Proteins64:643–651 [CrossRef][PubMed]
    [Google Scholar]
  56. Zhong S.-R., Jin Y., Wu J.-B., Jia Y.-H., Xu G.-L., Wang G.-C., Xiong Y.-L., Lu Q.-M.. ( 2009;). Purification and characterization of a new L-amino acid oxidase from Daboia russellii siamensis venom. Toxicon54:763–771 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054486-0
Loading
/content/journal/micro/10.1099/mic.0.054486-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error