1887

Abstract

This study examined 49 field isolates of the genus , with the 49 being allocated to 36 epidemiologically unrelated groups and one isolate from each group being examined in detail. In addition, six type and reference strains were investigated. Phylogenetic analysis of partially sequenced , , , and genes confirmed the existence of the species , while a species complex encompassing , , , and sp. A could not be resolved. All isolates shared at least one identical sequence in one gene, indicating low diversity or horizontal gene transfer (HGT) between isolates. Such HGT between isolates of defined species and unclassified isolates combined with high sequence similarity can be explained as the result of an ongoing speciation process. The alternative explanation is that , and sp. A were misclassified originally. Except for , identification of species of seems problematic, even by DNA sequencing, as shown in the present investigation. The results indicate that probably contains only two or three species. Until the taxonomic revision is completed we recommend that isolates that do not fit with named species by genotype and phenotype be designated sp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054429-0
2012-04-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/993.html?itemId=/content/journal/micro/10.1099/mic.0.054429-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Drancourt M., Raoult D.. ( 2009;). The rpoB gene as a tool for clinical microbiologists. Trends Microbiol17:37–45 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Angen Ø., Mutters R., Caugant D. A., Olsen J. E., Bisgaard M.. ( 1999;). Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA–DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov.. Int J Syst Bacteriol49:67–86 [CrossRef][PubMed]
    [Google Scholar]
  4. Angen O., Ahrens P., Kuhnert P., Christensen H., Mutters R.. ( 2003;). Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedis ‘Haemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. Int J Syst Evol Microbiol53:1449–1456 [CrossRef][PubMed]
    [Google Scholar]
  5. Angen O., Oliveira S., Ahrens P., Svensmark B., Leser T. D.. ( 2007;). Development of an improved species specific PCR test for detection of Haemophilus parasuis . Vet Microbiol119:266–276 [CrossRef][PubMed]
    [Google Scholar]
  6. Biberstein E. L., White D. C.. ( 1969;). A proposal for the establishment of two new Haemophilus species. J Med Microbiol2:75–78 [CrossRef][PubMed]
    [Google Scholar]
  7. Bisgaard M., Christensen J. P., Bojesen A. M., Christensen H.. ( 2007;). Avibacterium endocarditidis sp. nov., isolated from valvular endocarditis in chickens. Int J Syst Evol Microbiol57:1729–1734 [CrossRef][PubMed]
    [Google Scholar]
  8. Bisgaard M., Bojesen A. M., Christensen J. P., Christensen H.. ( 2010;). Observations on the incidence and aetiology of valvular endocarditis in broiler breeders and detection of a newly described taxon of Pasteurellaceae, Avibacterium endocarditidis . Avian Pathol39:177–181 [CrossRef][PubMed]
    [Google Scholar]
  9. Bisgaard M., Nørskov-Lauritsen N., de Wit J., Hess C., Christensen H.. ( 2011;). Multilocus sequence analysis of Avibacterium documents incipient species and unresolved classification. Proceedings from XVII World Veterinary Poultry Congress
    [Google Scholar]
  10. Blackall P. J.. ( 1988;). Biochemical properties of catalase-positive avian haemophili. J Gen Microbiol134:2801–2805[PubMed]
    [Google Scholar]
  11. Blackall P. J.. ( 1999;). Infectious coryza: overview of the disease and new diagnostic options. Clin Microbiol Rev12:627–632[PubMed]
    [Google Scholar]
  12. Blackall P. J., Nørskov-Lauritsen N.. ( 2008;). Pasteurellaceae – the view from the diagnostic laboratory. Pasteurellaceae, Biology, Genomics and Molecular Aspects227–259 Kuhnert P., Christensen H.. Norfolk: Caister Academic Press;
    [Google Scholar]
  13. Blackall P. J., Christensen H., Beckenham T., Blackall L. L., Bisgaard M.. ( 2005;). Reclassification of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov.. Int J Syst Evol Microbiol55:353–362 [CrossRef][PubMed]
    [Google Scholar]
  14. Bragg R. R., Greyling J. M., Verschoor J. A.. ( 1997;). Isolation and identification of NAD-independent bacteria from chickens with symptoms of infectious coryza. Avian Pathol26:595–606 [CrossRef][PubMed]
    [Google Scholar]
  15. Chen X., Miflin J. K., Zhang P., Blackall P. J.. ( 1996;). Development and application of DNA probes and PCR tests for Haemophilus paragallinarum . Avian Dis40:398–407 [CrossRef][PubMed]
    [Google Scholar]
  16. Christensen H., Bisgaard M.. ( 2010;). Molecular classification and its impact on diagnostics and understanding the phylogeny and epidemiology of selected members of Pasteurellaceae of veterinary importance. Berl Munch Tierarztl Wochenschr123:20–30[PubMed]
    [Google Scholar]
  17. Christensen H., Bisgaard M., Frederiksen W., Mutters R., Kuhnert P., Olsen J. E.. ( 2001;). Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal on reformulation of recommendation 30b of the Bacteriological Code. Int J Syst Evol Microbiol51:2221–2225 [CrossRef][PubMed]
    [Google Scholar]
  18. Christensen H., Bisgaard M., Olsen J. E.. ( 2002;). Reclassification of equine isolates previously reported as Actinobacillus equuli, variants of A. equuli, Actinobacillus suis or Bisgaard taxon 11 and proposal of A. equuli subsp. equuli subsp. nov. and A. equuli subsp. haemolyticus subsp. nov.. Int J Syst Evol Microbiol52:1569–1576 [CrossRef][PubMed]
    [Google Scholar]
  19. Christensen H., Kuhnert P., Busse H.-J., Frederiksen W. C., Bisgaard M.. ( 2007;). Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae . Int J Syst Evol Microbiol57:166–178 [CrossRef][PubMed]
    [Google Scholar]
  20. Christensen H., Blackall P. J., Bisgaard M.. ( 2009;). Phylogenetic relationships of unclassified, satellitic Pasteurellaceae obtained from different species of birds as demonstrated by 16S rRNA gene sequence comparison. Res Microbiol160:315–321 [CrossRef][PubMed]
    [Google Scholar]
  21. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  22. Dewhirst F. E., Paster B. J., Olsen I., Fraser G. J.. ( 1993;). Phylogeny of the Pasteurellaceae as determined by comparison of 16S ribosomal ribonucleic acid sequences. Zentralbl Bakteriol279:35–44 [CrossRef][PubMed]
    [Google Scholar]
  23. Dykhuizen D. E., Green L.. ( 1991;). Recombination in Escherichia coli and the definition of biological species. J Bacteriol173:7257–7268[PubMed]
    [Google Scholar]
  24. Felsenstein J.. ( 1995;). phylip (Phylogeny Inference Package) version 3.5c.
  25. Gautier A. L., Dubois D., Escande F., Avril J.-L., Trieu-Cuot P., Gaillot O.. ( 2005;). Rapid and accurate identification of human isolates of Pasteurella and related species by sequencing the sodA gene. J Clin Microbiol43:2307–2314 [CrossRef][PubMed]
    [Google Scholar]
  26. Giammanco G. M., Grimont P. A., Grimont F., Lefevre M., Giammanco G., Pignato S.. ( 2011;). Phylogenetic analysis of the genera Proteus, Morganella and Providencia by comparison of rpoB gene sequences of type and clinical strains suggests the reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov.. Int J Syst Evol Microbiol61:1638–1644 [CrossRef][PubMed]
    [Google Scholar]
  27. Glazunova O. O., Raoult D., Roux V.. ( 2009;). Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus . Int J Syst Evol Microbiol59:2317–2322 [CrossRef][PubMed]
    [Google Scholar]
  28. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  29. Grassly N. C., Holmes E. C.. ( 1997;). A likelihood method for the detection of selection and recombination using nucleotide sequences. Mol Biol Evol14:239–247[PubMed][CrossRef]
    [Google Scholar]
  30. Hall W. J., Heddleston K. L., Legenhausen D. H., Hughes R. W.. ( 1955;). Studies on pasteurellosis. I. A new species of Pasteurella encountered in chronic fowl cholera. Am J Vet Res16:598–604[PubMed]
    [Google Scholar]
  31. Haubold B., Hudson R. R.. ( 2000;). LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage analysis. Bioinformatics16:847–848 [CrossRef][PubMed]
    [Google Scholar]
  32. Hayashimoto N., Takakura A., Itoh T.. ( 2005;). Genetic diversity on 16S rDNA sequence and phylogenic tree analysis in Pasteurella pneumotropica strains isolated from laboratory animals. Curr Microbiol51:239–243 [CrossRef][PubMed]
    [Google Scholar]
  33. Huß V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192[CrossRef]
    [Google Scholar]
  34. Korczak B., Christensen H., Emler S., Frey J., Kuhnert P.. ( 2004;). Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol54:1393–1399 [CrossRef][PubMed]
    [Google Scholar]
  35. Kuhnert P., Korczak B. M.. ( 2006;). Prediction of whole-genome DNA–DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology152:2537–2548 [CrossRef][PubMed]
    [Google Scholar]
  36. Kuhnert P., Korczak B., Falsen E., Straub R., Hoops A., Boerlin P., Frey J., Mutters R.. ( 2004;). Nicoletella semolina gen. nov., sp. nov., a new member of Pasteurellaceae isolated from horses with airway disease. J Clin Microbiol42:5542–5548 [CrossRef][PubMed]
    [Google Scholar]
  37. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C.. ( 1999;). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol73:152–160[PubMed]
    [Google Scholar]
  38. Ludwig W., Klenk H.-P.. ( 2001;). Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. Bergey’s Manual of Systematic Bacteriology, 2nd edn.49–65 Boone D. R., Castenholz R. W., Garrity G. M.. New York: Springer; [CrossRef]
    [Google Scholar]
  39. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K.. & other authors ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145 [CrossRef][PubMed]
    [Google Scholar]
  40. Mayor D., Korczak B. M., Christensen H., Bisgaard M., Frey J., Kuhnert P.. ( 2006;). Distribution of RTX toxin genes in strains of [Actinobacillus] rossii and [Pasteurella] mairii . Vet Microbiol116:194–201 [CrossRef][PubMed]
    [Google Scholar]
  41. Mollet C., Drancourt M., Raoult D.. ( 1997;). rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol26:1005–1011 [CrossRef][PubMed]
    [Google Scholar]
  42. Morrison D. A.. ( 2010;). Using data-display networks for exploratory data analysis in phylogenetic studies. Mol Biol Evol27:1044–1057 [CrossRef][PubMed]
    [Google Scholar]
  43. Morrow C. J., Samu G., Mátrai E., Klausz A., Wood A. M., Richter S., Jaskulska B., Hess M.. ( 2008;). Avian hepatitis E virus infection and possible associated clinical disease in broiler breeder flocks in Hungary. Avian Pathol37:527–535 [CrossRef][PubMed]
    [Google Scholar]
  44. Mutters R., Piechulla K., Hinz K.-H., Mannheim W.. ( 1985;). Pasteurella avium (Hinz and Kunjara 1977) comb. nov. and Pasteurella volantium sp. nov.. Int J Syst Bacteriol35:5–9 [CrossRef]
    [Google Scholar]
  45. Nørskov-Lauritsen N.. ( 2011;). Increased level of intragenomic 16S rRNA gene heterogeneity in commensal strains closely related to Haemophilus influenzae . Microbiology157:1050–1055 [CrossRef][PubMed]
    [Google Scholar]
  46. Nørskov-Lauritsen N., Christensen H., Okkels H., Kilian M., Bruun B.. ( 2004;). Delineation of the genus Actinobacillus by comparison of partial infB sequences. Int J Syst Evol Microbiol54:635–644 [CrossRef][PubMed]
    [Google Scholar]
  47. Nørskov-Lauritsen N., Bruun B., Kilian M.. ( 2005;). Multilocus sequence phylogenetic study of the genus Haemophilus with description of Haemophilus pittmaniae sp. nov.. Int J Syst Evol Microbiol55:449–456 [CrossRef][PubMed]
    [Google Scholar]
  48. Retchless A. C., Lawrence J. G.. ( 2007;). Temporal fragmentation of speciation in bacteria. Science317:1093–1096 [CrossRef][PubMed]
    [Google Scholar]
  49. Rice P., Longden I., Bleasby A.. ( 2000;). emboss: the European Molecular Biology Open Software Suite. Trends Genet16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  50. Soriano V. E., Téllez G., Hargis B. M., Newberry L., Salgado-Miranda C., Vázquez J. C.. ( 2004;). Typing of Haemophilus paragallinarum strains by using enterobacterial repetitive intergenic consensus-based polymerase chain reaction. Avian Dis48:890–895 [CrossRef][PubMed]
    [Google Scholar]
  51. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  52. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  53. Via S.. ( 2009;). Natural selection in action during speciation. Proc Natl Acad Sci U S A106:Suppl. 19939–9946 [CrossRef][PubMed]
    [Google Scholar]
  54. Welchman D. de B., King S. A., Wragg P., Wood A. M., Irvine R. M., Pepper W. J., Dijkman R., de Wit J. J.. ( 2010;). Infectious coryza in chickens in Great Britain. Vet Rec167:912–913 [CrossRef][PubMed]
    [Google Scholar]
  55. Zeigler D. R.. ( 2003;). Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol53:1893–1900 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054429-0
Loading
/content/journal/micro/10.1099/mic.0.054429-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error