1887

Abstract

Despite the detrimental role that endogenously generated reactive oxygen species (ROS) may play in bacteria exposed to aerobic environments, very few sources of ROS have been identified . Such studies are often precluded by the presence of efficient ROS-scavenging pathways, like those found in the aerotolerant anaerobe . Here we demonstrate that deletion of the genes encoding catalase (Kat), alkylhydroperoxide reductase (AhpC) and thioredoxin-dependent peroxidase (Tpx) strongly inhibits HO detoxification in , thereby allowing for the quantification of ROS production. Exogenous fumarate significantly reduced HO production in a ΔΔΔ strain, as did deletion of fumarate reductase subunit c (). Deletion of also increased the aerotolerance of a strain lacking superoxide dismutase, indicating that fumarate reductase is a major contributor to ROS formation in exposed to oxygen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054403-0
2012-02-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/539.html?itemId=/content/journal/micro/10.1099/mic.0.054403-0&mimeType=html&fmt=ahah

References

  1. Baughn A. D., Malamy M. H.. ( 2002;). A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A99:4662–4667 [CrossRef][PubMed]
    [Google Scholar]
  2. Baughn A. D., Malamy M. H.. ( 2003;). The essential role of fumarate reductase in haem-dependent growth stimulation of Bacteroides fragilis. Microbiology149:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  3. Baughn A. D., Malamy M. H.. ( 2004;). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature427:441–444 [CrossRef][PubMed]
    [Google Scholar]
  4. Fridovich I.. ( 1998;). Oxygen toxicity: a radical explanation. J Exp Biol201:1203–1209[PubMed]
    [Google Scholar]
  5. Fridovich I.. ( 1999;). Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen?. Ann N Y Acad Sci893:13–18 [CrossRef][PubMed]
    [Google Scholar]
  6. Godoy V. G., Dallas M. M., Russo T. A., Malamy M. H.. ( 1993;). A role for Bacteroides fragilis neuraminidase in bacterial growth in two model systems. Infect Immun61:4415–4426[PubMed]
    [Google Scholar]
  7. Gort A. S., Imlay J. A.. ( 1998;). Balance between endogenous superoxide stress and antioxidant defenses. J Bacteriol180:1402–1410[PubMed]
    [Google Scholar]
  8. Hanahan D., Jessee J., Bloom F. R.. ( 1991;). Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol204:63–113 [CrossRef][PubMed]
    [Google Scholar]
  9. Herren C. D., Rocha E. R., Smith C. J.. ( 2003;). Genetic analysis of an important oxidative stress locus in the anaerobe Bacteroides fragilis. Gene316:167–175 [CrossRef][PubMed]
    [Google Scholar]
  10. Imlay J. A.. ( 1995;). A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol Chem270:19767–19777[PubMed]
    [Google Scholar]
  11. Imlay J. A.. ( 2003;). Pathways of oxidative damage. Annu Rev Microbiol57:395–418 [CrossRef][PubMed]
    [Google Scholar]
  12. Imlay J. A.. ( 2008;). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem77:755–776 [CrossRef][PubMed]
    [Google Scholar]
  13. Korshunov S., Imlay J. A.. ( 2006;). Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol188:6326–6334 [CrossRef][PubMed]
    [Google Scholar]
  14. Korshunov S., Imlay J. A.. ( 2010;). Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol75:1389–1401 [CrossRef][PubMed]
    [Google Scholar]
  15. McCord J. M., Fridovich I.. ( 1969;). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem244:6049–6055[PubMed]
    [Google Scholar]
  16. Messner K. R., Imlay J. A.. ( 2002;). Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem277:42563–42571 [CrossRef][PubMed]
    [Google Scholar]
  17. Pan N., Imlay J. A.. ( 2001;). How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron. Mol Microbiol39:1562–1571 [CrossRef][PubMed]
    [Google Scholar]
  18. Park S., You X., Imlay J. A.. ( 2005;). Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx mutants of Escherichia coli. Proc Natl Acad Sci U S A102:9317–9322 [CrossRef][PubMed]
    [Google Scholar]
  19. Parsonage D., Karplus P. A., Poole L. B.. ( 2008;). Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci U S A105:8209–8214 [CrossRef][PubMed]
    [Google Scholar]
  20. Privalle C. T., Gregory E. M.. ( 1979;). Superoxide dismutase and O2 lethality in Bacteroides fragilis. J Bacteriol138:139–145[PubMed]
    [Google Scholar]
  21. Rocha E. R., Smith C. J.. ( 1999;). Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis. J Bacteriol181:5701–5710[PubMed]
    [Google Scholar]
  22. Rocha E. R., Selby T., Coleman J. P., Smith C. J.. ( 1996;). Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol178:6895–6903[PubMed]
    [Google Scholar]
  23. Seaver L. C., Imlay J. A.. ( 2001;). Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol183:7173–7181 [CrossRef][PubMed]
    [Google Scholar]
  24. Sund C. J., Rocha E. R., Tzianabos A. O., Wells W. G., Gee J. M., Reott M. A., O’Rourke D. P., Smith C. J.. ( 2008;). The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol67:129–142 [CrossRef][PubMed]
    [Google Scholar]
  25. Tang Y. P., Malamy M. H.. ( 2000;). Isolation of Bacteroides fragilis mutants with in vivo growth defects by using Tn4400′, a modified Tn4400 transposition system, and a new screening method. Infect Immun68:415–419 [CrossRef][PubMed]
    [Google Scholar]
  26. Tang Y. P., Dallas M. M., Malamy M. H.. ( 1999;). Characterization of the Batl (Bacteroides aerotolerance) operon in Bacteroides fragilis: isolation of a B. fragilis mutant with reduced aerotolerance and impaired growth in in vivo model systems. Mol Microbiol32:139–149 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. S., Malamy M. H.. ( 1990;). Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J Bacteriol172:2584–2593[PubMed]
    [Google Scholar]
  28. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W.. ( 1989;). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res17:3469–3478 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054403-0
Loading
/content/journal/micro/10.1099/mic.0.054403-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error