1887

Abstract

Transcriptional regulation of primary and secondary metabolism is well-studied in , a model organism for antibiotic production and cell differentiation. In contrast, little is known about post-transcriptional regulation and the potential functions of small non-coding RNAs (sRNAs) in this Gram-positive, GC-rich soil bacterium. Here, we report the identification and characterization of scr5239, an sRNA highly conserved in the genus . The sRNA is 159 nt long, composed of five stem–loops, and encoded in the intergenic region between SCO5238 and SCO5239. scr5239 expression is constitutive under several stress and growth conditions but dependent on the nitrogen supply. scr5239 decreases the production of the antibiotic actinorhodin, and represses expression of the extracellular agarase at the post-transcriptional level by direct base pairing to the coding region 33 nt downstream of the ribosome-binding site.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054205-0
2012-02-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/424.html?itemId=/content/journal/micro/10.1099/mic.0.054205-0&mimeType=html&fmt=ahah

References

  1. Afonyushkin T., Moll I., Bläsi U., Kaberdin V. R.. ( 2003;). Temperature-dependent stability and translation of Escherichia coli ompA mRNA. Biochem Biophys Res Commun311:604–609 [CrossRef][PubMed]
    [Google Scholar]
  2. Aiba H.. ( 2007;). Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol10:134–139 [CrossRef][PubMed]
    [Google Scholar]
  3. Argaman L., Hershberg R., Vogel J., Bejerano G., Wagner E. G. H., Margalit H., Altuvia S.. ( 2001;). Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol11:941–950 [CrossRef][PubMed]
    [Google Scholar]
  4. Babitzke P., Romeo T.. ( 2007;). CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol10:156–163 [CrossRef][PubMed]
    [Google Scholar]
  5. Bentley S. D., Chater K. F., Cerdeño-Tárraga A.-M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H.. & other authors ( 2002;). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417:141–147 [CrossRef][PubMed]
    [Google Scholar]
  6. Binnie C., Jenish D., Cossar D., Szabo A., Trudeau D., Krygsman P., Malek L. T., Stewart D. I.. ( 1997;). Expression and characterization of soluble human erythropoietin receptor made in Streptomyces lividans 66. Protein Expr Purif11:271–278 [CrossRef][PubMed]
    [Google Scholar]
  7. Bouvier M., Sharma C. M., Mika F., Nierhaus K. H., Vogel J.. ( 2008;). Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell32:827–837 [CrossRef][PubMed]
    [Google Scholar]
  8. Brawner M. E., Auerbach J. I., Fornwald J. A., Rosenberg M., Taylor D. P.. ( 1985;). Characterization of Streptomyces promoter sequences using the Escherichia coli galactokinase gene. Gene40:191–201 [CrossRef][PubMed]
    [Google Scholar]
  9. Brockmann H., Pini H., Plotho O. V.. ( 1950;). Über Actinomycetenfarbstoffe, I. Mitteil.: Actinorhodin, ein roter, antibiotisch wirksamer Farbstoff aus Actinomyceten. Chem Ber83:161–167 [CrossRef]
    [Google Scholar]
  10. Buttner M. J., Smith A. M., Bibb M. J.. ( 1988;). At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell52:599–607 [CrossRef][PubMed]
    [Google Scholar]
  11. Chater K. F.. ( 2001;). Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex?. Curr Opin Microbiol4:667–673 [CrossRef][PubMed]
    [Google Scholar]
  12. Chevalier C., Geissmann T., Helfer A.-C., Romby P.. ( 2009;). Probing mRNA structure and sRNA–mRNA interactions in bacteria using enzymes and lead(II). Methods Mol Biol540:215–232
    [Google Scholar]
  13. Claessen D., de Jong W., Dijkhuizen L., Wösten H. A. B.. ( 2006;). Regulation of Streptomyces development: reach for the sky!. Trends Microbiol14:313–319 [CrossRef][PubMed]
    [Google Scholar]
  14. D’Alia D., Nieselt K., Steigele S., Müller J., Verburg I., Takano E.. ( 2010;). Noncoding RNA of glutamine synthetase I modulates antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol192:1160–1164 [CrossRef][PubMed]
    [Google Scholar]
  15. Darfeuille F., Unoson C., Vogel J., Wagner E. G. H.. ( 2007;). An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell26:381–392 [CrossRef][PubMed]
    [Google Scholar]
  16. Dühring U., Axmann I. M., Hess W. R., Wilde A.. ( 2006;). An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci U S A103:7054–7058 [CrossRef][PubMed]
    [Google Scholar]
  17. Fröhlich K. S., Vogel J.. ( 2009;). Activation of gene expression by small RNA. Curr Opin Microbiol12:674–682 [CrossRef][PubMed]
    [Google Scholar]
  18. Gaballa A., Antelmann H., Aguilar C., Khakh S. K., Song K.-B., Smaldone G. T., Helmann J. D.. ( 2008;). The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A105:11927–11932 [CrossRef][PubMed]
    [Google Scholar]
  19. Gottesman S.. ( 2004;). The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol58:303–328 [CrossRef][PubMed]
    [Google Scholar]
  20. Gottesman S., McCullen C. A., Guillier M., Vanderpool C. K., Majdalani N., Benhammou J., Thompson K. M., FitzGerald P. C., Sowa N. A., FitzGerald D. J.. ( 2006;). Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol71:1–11 [CrossRef][PubMed]
    [Google Scholar]
  21. Gruber A. R., Lorenz R., Bernhart S. H., Neuböck R., Hofacker I. L.. ( 2008;). The Vienna RNA websuite. Nucleic Acids Res36:Web Server issueW70–W74 [CrossRef][PubMed]
    [Google Scholar]
  22. Heidrich N., Moll I., Brantl S.. ( 2007;). In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res35:4331–4346 [CrossRef][PubMed]
    [Google Scholar]
  23. Hodgson D. A.. ( 2000;). Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol42:47–238 [CrossRef][PubMed]
    [Google Scholar]
  24. Hodgson D. A., Chater K. F.. ( 1981;). A chromosomal locus controlling extracellular agarase. J Gen Microbiol124:339–348
    [Google Scholar]
  25. Hopwood D. A., Chater K. F., Dowding J. E., Vivian A.. ( 1973;). Advances in Streptomyces coelicolor genetics. Bacteriol Rev37:371–405[PubMed]
    [Google Scholar]
  26. Huntzinger E., Boisset S., Saveanu C., Benito Y., Geissmann T., Namane A., Lina G., Etienne J., Ehresmann B.. & other authors ( 2005;). Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J24:824–835 [CrossRef][PubMed]
    [Google Scholar]
  27. Kieser T., Hopwood D. A., Chater K. F., Buttner M. J., Bibb M. J.. ( 2000;). Practical Streptomyces Genetics Norwich, UK: John Innes Centre;
    [Google Scholar]
  28. Labes G., Bibb M. J., Wohlleben W.. ( 1997;). Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn1696 as reporter. Microbiology143:1503–1512 [CrossRef][PubMed]
    [Google Scholar]
  29. Li H., Jacques P.-E., Ghinet M. G., Brzezinski R., Morosoli R.. ( 2005;). Determining the functionality of putative Tat-dependent signal peptides in Streptomyces coelicolor A3(2) by using two different reporter proteins. Microbiology151:2189–2198 [CrossRef][PubMed]
    [Google Scholar]
  30. Massé E., Escorcia F. E., Gottesman S.. ( 2003;). Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev17:2374–2383 [CrossRef][PubMed]
    [Google Scholar]
  31. Mattatall N. R., Sanderson K. E.. ( 1996;). Salmonella typhimurium LT2 possesses three distinct 23S rRNA intervening sequences. J Bacteriol178:2272–2278[PubMed]
    [Google Scholar]
  32. McAdams H. H., Srinivasan B., Arkin A. P.. ( 2004;). The evolution of genetic regulatory systems in bacteria. Nat Rev Genet5:169–178 [CrossRef][PubMed]
    [Google Scholar]
  33. Møller T., Franch T., Udesen C., Gerdes K., Valentin-Hansen P.. ( 2002;). Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev16:1696–1706 [CrossRef][PubMed]
    [Google Scholar]
  34. Morita T., Mochizuki Y., Aiba H.. ( 2006;). Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc Natl Acad Sci U S A103:4858–4863 [CrossRef][PubMed]
    [Google Scholar]
  35. Müller M., Weigand J. E., Weichenrieder O., Suess B.. ( 2006;). Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res34:2607–2617 [CrossRef][PubMed]
    [Google Scholar]
  36. Ng-Ying-Kin N. M., Yaphe W.. ( 1972;). Properties of agar: parameters affecting gel-formation and the agarose–iodine reaction. Carbohydr Res25:379–385 [CrossRef][PubMed]
    [Google Scholar]
  37. Pánek J., Bobek J., Mikulík K., Basler M., Vohradský J.. ( 2008;). Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics9:217 [CrossRef][PubMed]
    [Google Scholar]
  38. Parro V., Mellado R. P.. ( 1993;). Heterologous recognition in vivo of promoter sequences from the Streptomyces coelicolor dagA gene. FEMS Microbiol Lett106:347–356 [CrossRef][PubMed]
    [Google Scholar]
  39. Parro V., Mellado R. P.. ( 1994;). Effect of glucose on agarase overproduction by Streptomyces. Gene145:49–55 [CrossRef][PubMed]
    [Google Scholar]
  40. Pfeiffer V., Papenfort K., Lucchini S., Hinton J. C. D., Vogel J.. ( 2009;). Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol16:840–846 [CrossRef][PubMed]
    [Google Scholar]
  41. Reuther J., Wohlleben W.. ( 2007;). Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol12:139–146 [CrossRef][PubMed]
    [Google Scholar]
  42. Rodríguez-García A., Combes P., Pérez-Redondo R., Smith M. C. A., Smith M. C. M.. ( 2005;). Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res33:e87 [CrossRef][PubMed]
    [Google Scholar]
  43. Servín-González L., Jensen M. R., White J., Bibb M.. ( 1994;). Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Microbiology140:2555–2565 [CrossRef][PubMed]
    [Google Scholar]
  44. Sharma C. M., Vogel J.. ( 2009;). Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol12:536–546 [CrossRef][PubMed]
    [Google Scholar]
  45. Sharma C. M., Darfeuille F., Plantinga T. H., Vogel J.. ( 2007;). A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev21:2804–2817 [CrossRef][PubMed]
    [Google Scholar]
  46. Sittka A., Lucchini S., Papenfort K., Sharma C. M., Rolle K., Binnewies T. T., Hinton J. C. D., Vogel J.. ( 2008;). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet4:e1000163 [CrossRef][PubMed]
    [Google Scholar]
  47. Storz G., Altuvia S., Wassarman K. M.. ( 2005;). An abundance of RNA regulators. Annu Rev Biochem74:199–217 [CrossRef][PubMed]
    [Google Scholar]
  48. Sun X., Zhulin I., Wartell R. M.. ( 2002;). Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res30:3662–3671 [CrossRef][PubMed]
    [Google Scholar]
  49. Swiercz J. P., Hindra, Bobek J., Bobek J., Haiser H. J., Di Berardo C., Tjaden B., Elliot M. A.. ( 2008;). Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res36:7240–7251 [CrossRef][PubMed]
    [Google Scholar]
  50. Tezuka T., Hara H., Ohnishi Y., Horinouchi S.. ( 2009;). Identification and gene disruption of small noncoding RNAs in Streptomyces griseus. J Bacteriol191:4896–4904 [CrossRef][PubMed]
    [Google Scholar]
  51. Udekwu K. I., Darfeuille F., Vogel J., Reimegård J., Holmqvist E., Wagner E. G. H.. ( 2005;). Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev19:2355–2366 [CrossRef][PubMed]
    [Google Scholar]
  52. Unoson C., Wagner E. G. H.. ( 2008;). A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol70:258–270 [CrossRef][PubMed]
    [Google Scholar]
  53. Večerek B., Moll I., Bläsi U.. ( 2007;). Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J26:965–975 [CrossRef][PubMed]
    [Google Scholar]
  54. Vockenhuber M.-P., Sharma C. M., Statt M. G., Schmidt D., Xu Z., Dietrich S., Liesegang H., Mathews D. H., Suess B.. ( 2011;). Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol8:468–477 [CrossRef][PubMed]
    [Google Scholar]
  55. Vogel J.. ( 2009;). A rough guide to the non-coding RNA world of Salmonella. Mol Microbiol71:1–11 [CrossRef][PubMed]
    [Google Scholar]
  56. Vogel J., Luisi B. F.. ( 2011;). Hfq and its constellation of RNA. Nat Rev Microbiol9:578–589 [CrossRef][PubMed]
    [Google Scholar]
  57. Vogel J., Wagner E. G. H.. ( 2007;). Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol10:262–270 [CrossRef][PubMed]
    [Google Scholar]
  58. Vogel J., Argaman L., Wagner E. G. H., Altuvia S.. ( 2004;). The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr Biol14:2271–2276 [CrossRef][PubMed]
    [Google Scholar]
  59. Walker S. C., Avis J. M., Conn G. L.. ( 2003;). General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res31:e82 [CrossRef][PubMed]
    [Google Scholar]
  60. Waters L. S., Storz G.. ( 2009;). Regulatory RNAs in bacteria. Cell136:615–628 [CrossRef][PubMed]
    [Google Scholar]
  61. Watve M. G., Tickoo R., Jog M. M., Bhole B. D.. ( 2001;). How many antibiotics are produced by the genus Streptomyces?. Arch Microbiol176:386–390 [CrossRef][PubMed]
    [Google Scholar]
  62. Wehmeier U. F.. ( 1995;). New multifunctional Escherichia coliStreptomyces shuttle vectors allowing blue-white screening on XGal plates. Gene165:149–150 [CrossRef][PubMed]
    [Google Scholar]
  63. Widdick D. A., Eijlander R. T., van Dijl J. M., Kuipers O. P., Palmer T.. ( 2008;). A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol375:595–603 [CrossRef][PubMed]
    [Google Scholar]
  64. Will S., Reiche K., Hofacker I. L., Stadler P. F., Backofen R.. ( 2007;). Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol3:e65 [CrossRef][PubMed]
    [Google Scholar]
  65. Yamasaki M., Redenbach M., Kinashi H.. ( 2001;). Integrated structures of the linear plasmid SCP1 in two bidirectional donor strains of Streptomyces coelicolor A3(2). Mol Gen Genet264:634–642 [CrossRef][PubMed]
    [Google Scholar]
  66. Zhang A., Wassarman K. M., Rosenow C., Tjaden B. C., Storz G., Gottesman S.. ( 2003;). Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol50:1111–1124 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054205-0
Loading
/content/journal/micro/10.1099/mic.0.054205-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error