1887

Abstract

The reductases performing the four steps of denitrification are controlled by a network of transcriptional regulators and ancillary factors responding to intra- and extracellular signals, amongst which are oxygen and N oxides (NO and ). Although many components of the regulatory network have been identified, there are gaps in our understanding of their role(s) in controlling the expression of the various reductases, in particular the environmentally important NO reductase (NOR). We investigated denitrification phenotypes of mutants deficient in: (i) regulatory proteins (three FNR-type transcriptional regulators, NarR, NNR and FnrP, and NirI, which is involved in transcription activation of the structural cluster); (ii) functional enzymes (NO reductase and NOR); or (iii) ancillary factors involved in NO reduction (NirX and NosX). A robotized incubation system allowed us to closely monitor changes in concentrations of oxygen and all gaseous products during the transition from oxic to anoxic respiration. Strains deficient in NO reductase were able to grow during denitrification, despite reaching micromolar concentrations of NO, but were unable to return to oxic respiration. The FnrP mutant showed linear anoxic growth in a medium with nitrate as the sole NO, but exponential growth was restored by replacing nitrate with nitrite. We interpret this as nitrite limitation, suggesting dual transcriptional control of respiratory nitrate reductase (NAR) by FnrP and NarR. Mutations in either NirX or NosX did not affect the phenotype, but the double mutant lacked the potential to reduce NO. Finally, we found that FnrP and NNR are alternative and equally effective inducers of NOR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054148-0
2012-03-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/826.html?itemId=/content/journal/micro/10.1099/mic.0.054148-0&mimeType=html&fmt=ahah

References

  1. Arai H., Mizutani M., Igarashi Y. ( 2003). Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa . Microbiology 149:29–36 [View Article][PubMed]
    [Google Scholar]
  2. Baumann B., van der Meer J. R., Snozzi M., Zehnder A. J. B. ( 1997). Inhibition of denitrification activity but not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH. Antonie van Leeuwenhoek 72:183–189 [View Article][PubMed]
    [Google Scholar]
  3. Bergaust L., Shapleigh J. P., Frostegård Å., Bakken L. ( 2008). Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environ Microbiol 10:3070–3081 [View Article][PubMed]
    [Google Scholar]
  4. Bergaust L., Mao Y., Bakken L. R., Frostegård A. ( 2010). Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans . Appl Environ Microbiol 76:6387–6396 [View Article][PubMed]
    [Google Scholar]
  5. Bouchal P., Struhárová I., Budinská E., Sedo O., Vyhlídalová T., Zdráhal Z., van Spanning R. J. M., Kucera I. ( 2010). Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Biochim Biophys Acta 1804:1350–1358[PubMed] [CrossRef]
    [Google Scholar]
  6. Corker H., Poole R. K. ( 2003). Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem 278:31584–31592 [View Article][PubMed]
    [Google Scholar]
  7. de Boer A. P., van der Oost J., Reijnders W. N., Westerhoff H. V., Stouthamer A. H., van Spanning R. J. M. ( 1996). Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans . Eur J Biochem 242:592–600 [View Article][PubMed]
    [Google Scholar]
  8. de Gier J. W., Lübben M., Reijnders W. N., Tipker C. A., Slotboom D. J., van Spanning R. J. M., Stouthamer A. H., van der Oost J. ( 1994). The terminal oxidases of Paracoccus denitrificans . Mol Microbiol 13:183–196 [View Article][PubMed]
    [Google Scholar]
  9. de Vries G. E., Harms N., Hoogendijk J., Stouthamer A. H. ( 1989). Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch Microbiol 152:52–57 [View Article]
    [Google Scholar]
  10. Dell’Acqua S., Pauleta S. R., Moura I., Moura J. J. ( 2011). The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. J Biol Inorg Chem 16:183–194 [View Article][PubMed]
    [Google Scholar]
  11. Gates A. J., Richardson D. J., Butt J. N. ( 2008). Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Biochem J 409:159–168 [View Article][PubMed]
    [Google Scholar]
  12. Lee Y. Y., Shearer N., Spiro S. ( 2006). Transcription factor NNR from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. Microbiology 152:1461–1470 [View Article][PubMed]
    [Google Scholar]
  13. Lueking D. R., Fraley R. T., Kaplan S. ( 1978). Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Fate of “old” and “new” membrane. J Biol Chem 253:451–457[PubMed]
    [Google Scholar]
  14. Metheringham R., Cole J. A. ( 1997). A reassessment of the genetic determinants, the effect of growth conditions and the availability of an electron donor on the nitrosating activity of Escherichia coli K-12. Microbiology 143:2647–2656 [View Article][PubMed]
    [Google Scholar]
  15. Molstad L., Dörsch P., Bakken L. R. ( 2007). Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. J Microbiol Methods 71:202–211 [View Article][PubMed]
    [Google Scholar]
  16. Rasmussen T., Berks B. C., Butt J. N., Thomson A. J. ( 2002). Multiple forms of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus . Biochem J 364:807–815 [View Article][PubMed]
    [Google Scholar]
  17. Richardson D. J. ( 2000). Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–571[PubMed]
    [Google Scholar]
  18. Saunders N. F., Houben E. N., Koefoed S. W., de Weert S., Reijnders W. N., Westerhoff H. V., De Boer A. P., van Spanning R. J. ( 1999). Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Mol Microbiol 34:24–36 [View Article][PubMed]
    [Google Scholar]
  19. Saunders N. F. W., Hornberg J. J., Reijnders W. N. M., Westerhoff H. V., de Vries S., van Spanning R. J. M. ( 2000). The NosX and NirX proteins of Paracoccus denitrificans are functional homologues: their role in maturation of nitrous oxide reductase. J Bacteriol 182:5211–5217 [View Article][PubMed]
    [Google Scholar]
  20. Sears H. J., Sawers G., Berks B. C., Ferguson S. J., Richardson D. J. ( 2000). Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology 146:2977–2985[PubMed]
    [Google Scholar]
  21. Strohm T. O., Griffin B., Zumft W. G., Schink B. ( 2007). Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 73:1420–1424 [View Article][PubMed]
    [Google Scholar]
  22. van Spanning R. J. M. ( 2011). Structure, function, regulation and evolution of the nitrite and nitrous oxide reductases: denitrification enzymes with a beta-propeller fold. Nitrogen Cycling in Bacteria, Molecular Analysis135–161 Moir J. W. P. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  23. van Spanning R. J. M., De Boer A. P., Reijnders W. N., Spiro S., Westerhoff H. V., Stouthamer A. H., Van der Oost J. ( 1995). Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett 360:151–154 [View Article][PubMed]
    [Google Scholar]
  24. van Spanning R. J. M., De Boer A. P., Reijnders W. N., Westerhoff H. V., Stouthamer A. H., Van Der Oost J. ( 1997). FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol 23:893–907 [View Article][PubMed]
    [Google Scholar]
  25. van Spanning R. J. M., Houben E., Reijnders W. N., Spiro S., Westerhoff H. V., Saunders N. ( 1999). Nitric oxide is a signal for NNR-mediated transcription activation in Paracoccus denitrificans . J Bacteriol 181:4129–4132[PubMed]
    [Google Scholar]
  26. Vollack K. U., Zumft W. G. ( 2001). Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri . J Bacteriol 183:2516–2526 [View Article][PubMed]
    [Google Scholar]
  27. Wood N. J., Alizadeh T., Bennett S., Pearce J., Ferguson S. J., Richardson D. J., Moir J. W. B. ( 2001). Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J Bacteriol 183:3606–3613 [View Article][PubMed]
    [Google Scholar]
  28. Wunsch P., Körner H., Neese F., van Spanning R. J. M., Kroneck P. M. H., Zumft W. G. ( 2005). NosX function connects to nitrous oxide (N2O) reduction by affecting the Cu(Z) center of NosZ and its activity in vivo. FEBS Lett 579:4605–4609 [View Article][PubMed]
    [Google Scholar]
  29. Zumft W. G. ( 1997). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616[PubMed]
    [Google Scholar]
  30. Zumft W. G., Kroneck P. M. H. ( 2007). Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 52:107–227 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.054148-0
Loading
/content/journal/micro/10.1099/mic.0.054148-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error