1887

Abstract

is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the () operon in strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar value, as measured by fluorescence spectroscopy. Unlike the NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of NiCl. The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene () had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the Nik system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054130-0
2012-06-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1645.html?itemId=/content/journal/micro/10.1099/mic.0.054130-0&mimeType=html&fmt=ahah

References

  1. Addy C., Ohara M., Kawai F., Kidera A., Ikeguchi M., Fuchigami S., Osawa M., Shimada I., Park S. Y. et al. ( 2007;). Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography. Acta Crystallogr D Biol Crystallogr63:221–229 [CrossRef][PubMed]
    [Google Scholar]
  2. Beckwith C. S., McGee D. J., Mobley H. L., Riley L. K.. ( 2001;). Cloning, expression, and catalytic activity of Helicobacter hepaticus urease. Infect Immun69:5914–5920 [CrossRef][PubMed]
    [Google Scholar]
  3. Benanti E. L., Chivers P. T.. ( 2009;). An intact urease assembly pathway is required to compete with NikR for nickel ions in Helicobacter pylori . J Bacteriol191:2405–2408 [CrossRef][PubMed]
    [Google Scholar]
  4. Benoit S. L., Maier R. J.. ( 2008;). Hydrogen and nickel metabolism in Helicobacter species. Ann N Y Acad Sci1125:242–251 [CrossRef][PubMed]
    [Google Scholar]
  5. Bury-Moné S., Thiberge J. M., Contreras M., Maitournam A., Labigne A., De Reuse H.. ( 2004;). Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori . Mol Microbiol53:623–638 [CrossRef][PubMed]
    [Google Scholar]
  6. Carlone G. M., Lascelles J.. ( 1982;). Aerobic and anaerobic respiratory systems in Campylobacter fetus subsp. jejuni grown in atmospheres containing hydrogen. J Bacteriol152:306–314[PubMed]
    [Google Scholar]
  7. Cavazza C., Martin L., Laffly E., Lebrette H., Cherrier M. V., Zeppieri L., Richaud P., Carrière M., Fontecilla-Camps J. C.. ( 2011;). Histidine 416 of the periplasmic binding protein NikA is essential for nickel uptake in Escherichia coli . FEBS Lett585:711–715 [CrossRef][PubMed]
    [Google Scholar]
  8. Cheng Y., Li H., Xia W., Sun H.. ( 2012;). Multifaceted SlyD from Helicobacter pylori: implication in [NiFe] hydrogenase maturation. J Biol Inorg Chem17:331–343 [CrossRef][PubMed]
    [Google Scholar]
  9. Cherrier M. V., Martin L., Cavazza C., Jacquamet L., Lemaire D., Gaillard J., Fontecilla-Camps J. C.. ( 2005;). Crystallographic and spectroscopic evidence for high affinity binding of FeEDTA(H2O) to the periplasmic nickel transporter NikA. J Am Chem Soc127:10075–10082 [CrossRef][PubMed]
    [Google Scholar]
  10. Cherrier M. V., Cavazza C., Bochot C., Lemaire D., Fontecilla-Camps J. C.. ( 2008;). Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. Biochemistry47:9937–9943 [CrossRef][PubMed]
    [Google Scholar]
  11. Clugston S. L., Daub E., Honek J. F.. ( 1998;). Identification of glyoxalase I sequences in Brassica oleracea and Sporobolus stapfianus: evidence for gene duplication events. J Mol Evol47:230–234 [CrossRef][PubMed]
    [Google Scholar]
  12. Contreras M., Thiberge J. M., Mandrand-Berthelot M. A., Labigne A.. ( 2003;). Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori . Mol Microbiol49:947–963 [CrossRef][PubMed]
    [Google Scholar]
  13. Cun S., Li H., Ge R., Lin M. C., Sun H.. ( 2008;). A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: implication for nickel homeostasis and bismuth susceptibility. J Biol Chem283:15142–15151 [CrossRef][PubMed]
    [Google Scholar]
  14. de Pina K., Navarro C., McWalter L., Boxer D. H., Price N. C., Kelly S. M., Mandrand-Berthelot M. A., Wu L. F.. ( 1995;). Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12. Eur J Biochem227:857–865 [CrossRef][PubMed]
    [Google Scholar]
  15. Ernst F. D., Kuipers E. J., Heijens A., Sarwari R., Stoof J., Penn C. W., Kusters J. G., van Vliet A. H.. ( 2005;). The nickel-responsive regulator NikR controls activation and repression of gene transcription in Helicobacter pylori . Infect Immun73:7252–7258 [CrossRef][PubMed]
    [Google Scholar]
  16. Ge R., Watt R. M., Sun X., Tanner J. A., He Q. Y., Huang J. D., Sun H.. ( 2006;). Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori . Biochem J393:285–293 [CrossRef][PubMed]
    [Google Scholar]
  17. Gilbert J. V., Ramakrishna J., Sunderman F. W. Jr, Wright A., Plaut A. G.. ( 1995;). Protein Hpn: cloning and characterization of a histidine-rich metal-binding polypeptide in Helicobacter pylori and Helicobacter mustelae . Infect Immun63:2682–2688[PubMed]
    [Google Scholar]
  18. Gundogdu O., Bentley S. D., Holden M. T., Parkhill J., Dorrell N., Wren B. W.. ( 2007;). Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics8:162 [CrossRef][PubMed]
    [Google Scholar]
  19. Hitchcock A., Hall S. J., Myers J. D., Mulholland F., Jones M. A., Kelly D. J.. ( 2010;). Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni . Microbiology156:2994–3010 [CrossRef][PubMed]
    [Google Scholar]
  20. Hoffman P. S., Goodman T. G.. ( 1982;). Respiratory physiology and energy conservation efficiency of Campylobacter jejuni . J Bacteriol150:319–326[PubMed]
    [Google Scholar]
  21. Jacobi A., Rossmann R., Böck A.. ( 1992;). The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli . Arch Microbiol158:444–451 [CrossRef][PubMed]
    [Google Scholar]
  22. Kucharski L. M., Lubbe W. J., Maguire M. E.. ( 2000;). Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J Biol Chem275:16767–16773 [CrossRef][PubMed]
    [Google Scholar]
  23. Leach M. R., Zhang J. W., Zamble D. B.. ( 2007;). The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD. J Biol Chem282:16177–16186 [CrossRef][PubMed]
    [Google Scholar]
  24. Lukey M. J., Parkin A., Roessler M. M., Murphy B. J., Harmer J., Palmer T., Sargent F., Armstrong F. A.. ( 2010;). How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem285:3928–3938 [CrossRef][PubMed]
    [Google Scholar]
  25. Maier R. J.. ( 2005;). Use of molecular hydrogen as an energy substrate by human pathogenic bacteria. Biochem Soc Trans33:83–85 [CrossRef][PubMed]
    [Google Scholar]
  26. Maier R. J., Olczak A., Maier S., Soni S., Gunn J.. ( 2004;). Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence. Infect Immun72:6294–6299 [CrossRef][PubMed]
    [Google Scholar]
  27. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E.. ( 1978;). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem87:206–210 [CrossRef][PubMed]
    [Google Scholar]
  28. Mobley H. L., Garner R. M., Bauerfeind P.. ( 1995;). Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol16:97–109 [CrossRef][PubMed]
    [Google Scholar]
  29. Navarro C., Wu L. F., Mandrand-Berthelot M. A.. ( 1993;). The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol9:1181–1191 [CrossRef][PubMed]
    [Google Scholar]
  30. Nielsen E. M., Engberg J., Madsen M.. ( 1997;). Distribution of serotypes of Campylobacter jejuni and C. coli from Danish patients, poultry, cattle and swine. FEMS Immunol Med Microbiol19:47–56 [CrossRef][PubMed]
    [Google Scholar]
  31. Olson J. W., Maier R. J.. ( 2002;). Molecular hydrogen as an energy source for Helicobacter pylori . Science298:1788–1790 [CrossRef][PubMed]
    [Google Scholar]
  32. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. et al. ( 2000;). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668 [CrossRef][PubMed]
    [Google Scholar]
  33. Saier M. H. Jr, Tran C. V., Barabote R. D.. ( 2006;). TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res34:Database issueD181–D186 [CrossRef][PubMed]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schauer K., Gouget B., Carrière M., Labigne A., de Reuse H.. ( 2007;). Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol63:1054–1068 [CrossRef][PubMed]
    [Google Scholar]
  36. Schauer K., Muller C., Carrière M., Labigne A., Cavazza C., De Reuse H.. ( 2010;). The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J Bacteriol192:1231–1237 [CrossRef][PubMed]
    [Google Scholar]
  37. Shepherd M., Heath M. D., Poole R. K.. ( 2007;). NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein. Biochemistry46:5030–5037 [CrossRef][PubMed]
    [Google Scholar]
  38. Smith R. L., Maguire M. E.. ( 1998;). Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol28:217–226 [CrossRef][PubMed]
    [Google Scholar]
  39. van Vliet A. H. M., Wooldridge K. G., Ketley J. M.. ( 1998;). Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol180:5291–5298[PubMed]
    [Google Scholar]
  40. van Vliet A. H., Poppelaars S. W., Davies B. J., Stoof J., Bereswill S., Kist M., Penn C. W., Kuipers E. J., Kusters J. G.. ( 2002;). NikR mediates nickel-responsive transcriptional induction of urease expression in Helicobacter pylori . Infect Immun70:2846–2852 [CrossRef][PubMed]
    [Google Scholar]
  41. van Vliet A. H., Kuipers E. J., Stoof J., Poppelaars S. W., Kusters J. G.. ( 2004;). Acid-responsive gene induction of ammonia-producing enzymes in Helicobacter pylori is mediated via a metal-responsive repressor cascade. Infect Immun72:766–773 [CrossRef][PubMed]
    [Google Scholar]
  42. Verwoert I. I., Verhagen E. F., van der Linden K. H., Verbree E. C., Nijkamp H. J., Stuitje A. R.. ( 1994;). Molecular characterization of an Escherichia coli mutant with a temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. FEBS Lett348:311–316 [CrossRef][PubMed]
    [Google Scholar]
  43. Vignais P. M., Billoud B., Meyer J.. ( 2001;). Classification and phylogeny of hydrogenases. FEMS Microbiol Rev25:455–501[PubMed][CrossRef]
    [Google Scholar]
  44. Wagenaar J. A., Jacobs-Reitsma W., Hofshagen M., Newell D.. ( 2008;). Poultry colonisation with Campylobacter and its control at the primary production level. Campylobacter, 3rd edn.667–678 Nachamkin I., Szymanski C. M., Blaser. M. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Wang Y., Taylor D. E.. ( 1990;). Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene94:23–28 [CrossRef][PubMed]
    [Google Scholar]
  46. Weerakoon D. R., Olson J. W.. ( 2008;). The Campylobacter jejuni NADH : ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH. J Bacteriol190:915–925 [CrossRef][PubMed]
    [Google Scholar]
  47. Weerakoon D. R., Borden N. J., Goodson C. M., Grimes J., Olson J. W.. ( 2009;). The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. Microb Pathog47:8–15 [CrossRef][PubMed]
    [Google Scholar]
  48. Wolfram L., Haas E., Bauerfeind P.. ( 2006;). Nickel represses the synthesis of the nickel permease NixA of Helicobacter pylori . J Bacteriol188:1245–1250 [CrossRef][PubMed]
    [Google Scholar]
  49. Wu L. F., Mandrand-Berthelot M. A., Waugh R., Edmonds C. J., Holt S. E., Boxer D. H.. ( 1989;). Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli . Mol Microbiol3:1709–1718 [CrossRef][PubMed]
    [Google Scholar]
  50. Wu L. F., Navarro C., Mandrand-Berthelot M.-A.. ( 1991;). The hydC region contains a multi-cistronic operon (nik) involved in nickel transport in Escherichia coli . Gene107:37–42 [CrossRef][PubMed]
    [Google Scholar]
  51. Zeng Y. B., Zhang D. M., Li H., Sun H.. ( 2008;). Binding of Ni2+ to a histidine- and glutamine-rich protein, Hpn-like. J Biol Inorg Chem13:1121–1131 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhang M., Pradel N., Mandrand-Berthelot M. A., Yu Z., Wu L. F.. ( 2003;). Effect of alteration of the C-terminal extension on the maturation and folding of the large subunit of the Escherichia coli hydrogenase-2. Biochimie85:575–579 [CrossRef][PubMed]
    [Google Scholar]
  53. Zhang J. W., Butland G., Greenblatt J. F., Emili A., Zamble D. B.. ( 2005;). A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem280:4360–4366 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054130-0
Loading
/content/journal/micro/10.1099/mic.0.054130-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error