1887

Abstract

In A ATCC 12633 cells grown with tetradecyltrimethylammonium bromide and exposed to AlCl, phosphatidylcholine (PC) levels increased, which alleviated stress caused by the Al. Here we cloned and sequenced a gene from this strain that encodes a phosphatidylcholine synthase (PCS) and characterized a -deficient mutant. In the -deficient mutant, PC could not be detected, whereas the mutant could be successfully complemented and expressed the enzyme, indicating that PC synthesis occurs exclusively via the PCS pathway in this organism. Although under non-stressing growth conditions the -deficient mutant showed growth like that of the wild-type strain, the mutant was much more sensitive when challenged with Al, which strongly supports the supposition that PC is involved in the response of to Al and acts as a temporary reservoir of available ions through the formation of Al : PC complexes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054072-0
2012-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1249.html?itemId=/content/journal/micro/10.1099/mic.0.054072-0&mimeType=html&fmt=ahah

References

  1. Albelo S. T., Domenech C. E.. ( 1997;). Carbons from choline present in the phospholipids of Pseudomonas aeruginosa. . FEMS Microbiol Lett 156:, 271–274. [CrossRef][PubMed]
    [Google Scholar]
  2. Ames G. F.. ( 1968;). Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. . J Bacteriol 95:, 833–843.[PubMed]
    [Google Scholar]
  3. Bernal P., Muñoz-Rojas J., Hurtado A., Ramos J. L., Segura A.. ( 2007;). A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. . Environ Microbiol 9:, 1135–1145. [CrossRef][PubMed]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  5. Boeris P. S., Domenech C. E., Lucchesi G. I.. ( 2007;). Modification of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetradecyltrimethylammonium. . J Appl Microbiol 103:, 1048–1054. [CrossRef][PubMed]
    [Google Scholar]
  6. Boeris P. S., Liffourrena A. S., Salvano M. A., Lucchesi G. I.. ( 2009;). Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminium. . Lett Appl Microbiol 49:, 491–496. [CrossRef][PubMed]
    [Google Scholar]
  7. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef][PubMed]
    [Google Scholar]
  8. Browne B. A., McColl J. C., Driscoll C. T.. ( 1990;). Aluminium speciation using morin. Morin and its complexes with aluminium. . J Environ Qual 19:, 65–72. [CrossRef]
    [Google Scholar]
  9. Comerci D. J., Altabe S., de Mendoza D., Ugalde R. A.. ( 2006;). Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. . J Bacteriol 188:, 1929–1934. [CrossRef][PubMed]
    [Google Scholar]
  10. Conde-Alvarez R., Grilló M. J., Salcedo S. P., de Miguel M. J., Fugier E., Gorvel J. P., Moriyón I., Iriarte M.. ( 2006;). Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. . Cell Microbiol 8:, 1322–1335. [CrossRef][PubMed]
    [Google Scholar]
  11. Conover G. M., Martinez-Morales F., Heidtman M. I., Luo Z. Q., Tang M., Chen C., Geiger O., Isberg R. R.. ( 2008;). Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. . Cell Microbiol 10:, 514–528.[PubMed]
    [Google Scholar]
  12. Daiyasu H., Kuma K. I., Yokoi T., Morii H., Koga Y., Toh H.. ( 2005;). A study of archaeal enzyme involved in polar lipid synthesis linking amino acid sequence information, genomic context and lipid composition. . Archea 1:, 399–410. [CrossRef]
    [Google Scholar]
  13. de Rudder K. E. E., Thomas-Oates J. E., Geiger O.. ( 1997;). Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. . J Bacteriol 179:, 6921–6928.[PubMed]
    [Google Scholar]
  14. de Rudder K. E. E., López-Lara I. M., Geiger O.. ( 2000;). Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. . Mol Microbiol 37:, 763–772. [CrossRef][PubMed]
    [Google Scholar]
  15. Duque E., García V., de la Torre J., Godoy P., Bernal P., Ramos J. L.. ( 2004;). Plasmolysis induced by toluene in a cyoB mutant of Pseudomonas putida. . Environ Microbiol 6:, 1021–1031. [CrossRef][PubMed]
    [Google Scholar]
  16. Fiske C. H., Subbarow Y.. ( 1925;). The colorimetric determination of phosphorus. . J Biol Chem 66:, 375–400.
    [Google Scholar]
  17. Hanada T., Kashima Y., Kosugi A., Koizumi Y., Yanagida F., Udaka S.. ( 2001;). A gene encoding phosphatidylethanolamine N-methyltransferase from Acetobacter aceti and some properties of its disruptant. . Biosci Biotechnol Biochem 65:, 2741–2748. [CrossRef][PubMed]
    [Google Scholar]
  18. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:, 557–580. [CrossRef][PubMed]
    [Google Scholar]
  19. Higgins J. A.. ( 1987;). Separation and analysis of membrane lipid components. . In Biological Membranes: a Practical Approach, pp. 103–137. Edited by Findlay J. B. C., Evans W. H... Oxford, UK:: IRL Press;.
    [Google Scholar]
  20. Kaniga K., Delor I., Cornelis G. R.. ( 1991;). A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. . Gene 109:, 137–141. [CrossRef][PubMed]
    [Google Scholar]
  21. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  22. Liffourrena A. S., López F. G., Salvano M. A., Domenech C. E., Lucchesi G. I.. ( 2008;). Biodegradation of tetradecyltrimethylammonium in Pseudomonas putida A ATCC 12633 improved by aluminium ions. . J Appl Microbiol 2:, 396–402.
    [Google Scholar]
  23. López-Lara I. M., Geiger O.. ( 2001;). Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. . J Biotechnol 91:, 211–221. [CrossRef][PubMed]
    [Google Scholar]
  24. Lucchesi G. I., Lisa T. A., Domenech C. E.. ( 1989;). Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. . FEMS Microbiol Lett 57:, 335–338. [CrossRef][PubMed]
    [Google Scholar]
  25. Lucchesi G. I., Liffourrena A. S., Boeris P. S., Salvano M. A.. ( 2010;). Adaptative response and degradation of quaternary ammonium compounds by Pseudomonas putida A ATCC 12633. . In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, pp. 1297–1303. Edited by Méndez-Vilas A... Badajoz, Spain:: Formatex;.
    [Google Scholar]
  26. MacKinnon N., Crowell K. J., Udit A. K., Macdonald P. M.. ( 2004;). Aluminum binding to phosphatidylcholine lipid bilayer membranes: 27Al and 31P NMR spectroscopic studies. . Chem Phys Lipids 132:, 23–36. [CrossRef][PubMed]
    [Google Scholar]
  27. MacKinnon N., Ridgway J., Crowell K. J., Macdonald P. M.. ( 2006;). Aluminum binding to phosphatidylcholine lipid bilayer membranes: aluminum exchange lifetimes from 31P NMR spectroscopy. . Chem Phys Lipids 139:, 85–95. [CrossRef][PubMed]
    [Google Scholar]
  28. Martínez-Morales F., Schobert M., López-Lara I. M., Geiger O.. ( 2003;). Pathways for phosphatidylcholine biosynthesis in bacteria. . Microbiology 149:, 3461–3471. [CrossRef][PubMed]
    [Google Scholar]
  29. Medeot D. B., Bueno M. A., Dardanelli M. S., de Lema M. G.. ( 2007;). Adaptational changes in lipids of Bradyrhizobium SEMIA 6144 nodulating peanut as a response to growth temperature and salinity. . Curr Microbiol 54:, 31–35. [CrossRef][PubMed]
    [Google Scholar]
  30. Minder A. C., de Rudder K. E. E., Narberhaus F., Fischer H. M., Hennecke H., Geiger O.. ( 2001;). Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. . Mol Microbiol 39:, 1186–1198. [CrossRef][PubMed]
    [Google Scholar]
  31. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A. P., Fouts D. E., Gill S. R., Pop M.. & other authors ( 2002;). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. . Environ Microbiol 4:, 799–808. [CrossRef][PubMed]
    [Google Scholar]
  32. Palleroni N. J.. ( 1992;). Taxonomy and identification. . In Pseudomonas, Molecular Biology and Biotechnology, pp. 105–115. Edited by Galli E., Silver S., Witholt B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  33. Pinkart H. C., White D. C.. ( 1997;). Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. . J Bacteriol 179:, 4219–4226.[PubMed]
    [Google Scholar]
  34. Ramos J. L., Duque E., Rodríguez-Herva J. J., Godoy P., Haïdour A., Reyes F., Fernández-Barrero A.. ( 1997;). Mechanisms for solvent tolerance in bacteria. . J Biol Chem 272:, 3887–3890. [CrossRef][PubMed]
    [Google Scholar]
  35. Rock C. O., Jackowski S., Cronan J. E.. ( 1996;). Lipid metabolism in prokaryotes. . In Biochemistry of Lipids, Lipoproteins and Membranes, pp. 35–74. Edited by Vance D. E., Vance J... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  36. Russell N. J.. ( 1992;). Physiology and molecular biology of psychrophylic microorganisms. . In Molecular Biology and Biotechnology of Extremophiles, pp. 203–224. Edited by Herbert R. A., Sharp R. J... Glasgow, London:: Blackie;.
    [Google Scholar]
  37. Sambrook J., Russell D. R.. ( 2001;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  38. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. ( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. . Gene 145:, 69–73. [CrossRef][PubMed]
    [Google Scholar]
  39. Sohlenkamp C., de Rudder K. E. E., Rohrs V., López-Lara I. M., Geiger O.. ( 2000;). Cloning and characterization of the gene for phosphatidylcholine synthase. . J Biol Chem 275:, 18919–18925. [CrossRef][PubMed]
    [Google Scholar]
  40. Sohlenkamp C., López-Lara I. M., Geiger O.. ( 2003;). Biosynthesis of phosphatidylcholine in bacteria. . Prog Lipid Res 42:, 115–162. [CrossRef][PubMed]
    [Google Scholar]
  41. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. ( 1990;). Use of T7 RNA polymerase to direct expression of cloned genes. . Methods Enzymol 185:, 60–89. [CrossRef][PubMed]
    [Google Scholar]
  42. Tang Y., Hollingsworth R. I.. ( 1998;). Regulation of lipid synthesis in Bradyrhizobium japonicum: low oxygen concentrations trigger phosphatidylinositol biosynthesis. . Appl Environ Microbiol 64:, 1963–1966.[PubMed]
    [Google Scholar]
  43. Wessel M., Klüsener S., Gödeke J., Fritz C., Hacker S., Narberhaus F.. ( 2006;). Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. . Mol Microbiol 62:, 906–915. [CrossRef][PubMed]
    [Google Scholar]
  44. Wilderman P. J., Vasil A. I., Martin W. E., Murphy R. C., Vasil M. L.. ( 2002;). Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. . J Bacteriol 184:, 4792–4799. [CrossRef][PubMed]
    [Google Scholar]
  45. Williams J. G., McMaster C. R.. ( 1998;). Scanning alanine mutagenesis of the CDP-alcohol phosphotransferase motif of Saccharomyces cerevisiae cholinephosphotransferase. . J Biol Chem 273:, 13482–13487. [CrossRef][PubMed]
    [Google Scholar]
  46. Xia W., Dowhan W.. ( 1995;). In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. . Proc Natl Acad Sci U S A 92:, 783–787. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054072-0
Loading
/content/journal/micro/10.1099/mic.0.054072-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error