1887

Abstract

Alanine racemase (Alr) is an essential enzyme in most bacteria; however, some species (e.g. ) can utilize -amino acid transaminase (Dat) to generate -alanine, which renders Alr non-essential. In addition to the conflicting reports on gene knockout of in a recent study concluded that depletion of Alr does not affect the growth of . In order to get an unambiguous answer on the essentiality of Alr in and validate it as a drug target and , we have inactivated the gene of and found that it was not possible to generate an knockout in the absence of a complementing gene copy or -alanine in the growth medium. The growth kinetics of the mutant revealed that requires very low amounts of -alanine (5–10 µg ml) for optimum growth. Survival kinetics of the mutant in the absence of -alanine indicated that depletion of this amino acid results in rapid loss of viability. The mutant was found to be defective for growth in macrophages. Analysis of phenotype in mice suggested that non-availability of -alanine in mice leads to clearance of bacteria followed by stabilization of bacterial number in lungs and spleen. Additionally, reversal of -cycloserine inhibition in the presence of -alanine in suggested that Alr is the primary target of -cycloserine. Thus, Alr of is a valid drug target and inhibition of Alr alone should result in loss of viability and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054064-0
2012-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/319.html?itemId=/content/journal/micro/10.1099/mic.0.054064-0&mimeType=html&fmt=ahah

References

  1. Anthony K. G., Strych U., Yeung K. R., Shoen C. S., Perez O., Krause K. L., Cynamon M. H., Aristoff P. A., Koski R. A.. ( 2011;). New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. . PLoS ONE 6:, e20374. [CrossRef][PubMed]
    [Google Scholar]
  2. Awasthy D., Gaonkar S., Shandil R. K., Yadav R., Bharath S., Marcel N., Subbulakshmi V., Sharma U.. ( 2009;). Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. . Microbiology 155:, 2978–2987. [CrossRef][PubMed]
    [Google Scholar]
  3. Bruning J. B., Murillo A. C., Chacon O., Barletta R. G., Sacchettini J. C.. ( 2011;). Structure of the Mycobacterium tuberculosis d-alanine : d-alanine ligase, a target of the antituberculosis drug d-cycloserine. . Antimicrob Agents Chemother 55:, 291–301. [CrossRef][PubMed]
    [Google Scholar]
  4. Cáceres N. E., Harris N. B., Wellehan J. F., Feng Z., Kapur V., Barletta R. G.. ( 1997;). Overexpression of the d-alanine racemase gene confers resistance to d-cycloserine in Mycobacterium smegmatis. . J Bacteriol 179:, 5046–5055.[PubMed]
    [Google Scholar]
  5. Chacon O., Feng Z., Harris N. B., Cáceres N. E., Adams L. G., Barletta R. G.. ( 2002;). Mycobacterium smegmatis d-alanine racemase mutants are not dependent on d-alanine for growth. . Antimicrob Agents Chemother 46:, 47–54. [CrossRef][PubMed]
    [Google Scholar]
  6. Chacon O., Bermudez L. E., Zinniel D. K., Chahal H. K., Fenton R. J., Feng Z., Hanford K., Adams L. G., Barletta R. G.. ( 2009;). Impairment of d-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages. . Microbiology 155:, 1440–1450. [CrossRef][PubMed]
    [Google Scholar]
  7. Chan E. D., Iseman M. D.. ( 2008;). Multidrug-resistant and extensively drug-resistant tuberculosis: a review. . Curr Opin Infect Dis 21:, 587–595. [CrossRef][PubMed]
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. & other authors ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. . Nature 393:, 537–544. [CrossRef][PubMed]
    [Google Scholar]
  9. Feng Z., Barletta R. G.. ( 2003;). Roles of Mycobacterium smegmatis d-alanine : d-alanine ligase and d-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor d-cycloserine. . Antimicrob Agents Chemother 47:, 283–291. [CrossRef][PubMed]
    [Google Scholar]
  10. Franzblau S. G., Witzig R. S., McLaughlin J. C., Torres P., Madico G., Hernandez A., Degnan M. T., Cook M. B., Quenzer V. K.. & other authors ( 1998;). Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. . J Clin Microbiol 36:, 362–366.[PubMed]
    [Google Scholar]
  11. Ginsberg A. M.. ( 2010;). Tuberculosis drug development: progress, challenges, and the road ahead. . Tuberculosis (Edinb) 90:, 162–167. [CrossRef][PubMed]
    [Google Scholar]
  12. Halouska S., Chacon O., Fenton R. J., Zinniel D. K., Barletta R. G., Powers R.. ( 2007;). Use of NMR metabolomics to analyze the targets of d-cycloserine in mycobacteria: role of d-alanine racemase. . J Proteome Res 6:, 4608–4614. [CrossRef][PubMed]
    [Google Scholar]
  13. Heaton M. P., Johnston R. B., Thompson T. L.. ( 1988;). Controlled lysis of bacterial cells utilizing mutants with defective synthesis of d-alanine. . Can J Microbiol 34:, 256–261. [CrossRef][PubMed]
    [Google Scholar]
  14. Hols P., Defrenne C., Ferain T., Derzelle S., Delplace B., Delcour J.. ( 1997;). The alanine racemase gene is essential for growth of Lactobacillus plantarum. . J Bacteriol 179:, 3804–3807.[PubMed]
    [Google Scholar]
  15. Kaufmann S. H., Hussey G., Lambert P. H.. ( 2010;). New vaccines for tuberculosis. . Lancet 375:, 2110–2119. [CrossRef][PubMed]
    [Google Scholar]
  16. Kurokawa K., Hamamoto H., Matsuo M., Nishida S., Yamane N., Lee B. L., Murakami K., Maki H., Sekimizu K.. ( 2009;). Evaluation of target specificity of antibacterial agents using Staphylococcus aureus ddlA mutants and d-cycloserine in a silkworm infection model. . Antimicrob Agents Chemother 53:, 4025–4027. [CrossRef][PubMed]
    [Google Scholar]
  17. LeMagueres P., Im H., Ebalunode J., Strych U., Benedik M. J., Briggs J. M., Kohn H., Krause K. L.. ( 2005;). The 1.9 Å crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. . Biochemistry 44:, 1471–1481. [CrossRef][PubMed]
    [Google Scholar]
  18. Milligan D. L., Tran S. L., Strych U., Cook G. M., Krause K. L.. ( 2007;). The alanine racemase of Mycobacterium smegmatis is essential for growth in the absence of d-alanine. . J Bacteriol 189:, 8381–8386. [CrossRef][PubMed]
    [Google Scholar]
  19. Mitchison D. A.. ( 2000;). Role of individual drugs in the chemotherapy of tuberculosis. . Int J Tuberc Lung Dis 4:, 796–806.[PubMed]
    [Google Scholar]
  20. Palumbo E., Favier C. F., Deghorain M., Cocconcelli P. S., Grangette C., Mercenier A., Vaughan E. E., Hols P.. ( 2004;). Knockout of the alanine racemase gene in Lactobacillus plantarum results in septation defects and cell wall perforation. . FEMS Microbiol Lett 233:, 131–138. [CrossRef][PubMed]
    [Google Scholar]
  21. Parish T., Stoker N. G.. ( 2000;). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. . Microbiology 146:, 1969–1975.[PubMed]
    [Google Scholar]
  22. Steen A., Palumbo E., Deghorain M., Cocconcelli P. S., Delcour J., Kuipers O. P., Kok J., Buist G., Hols P.. ( 2005;). Autolysis of Lactococcus lactis is increased upon d-alanine depletion of peptidoglycan and lipoteichoic acids. . J Bacteriol 187:, 114–124. [CrossRef][PubMed]
    [Google Scholar]
  23. Strych U., Penland R. L., Jimenez M., Krause K. L., Benedik M. J.. ( 2001;). Characterization of the alanine racemases from two mycobacteria. . FEMS Microbiol Lett 196:, 93–98. [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson R. J., Bouwer H. G., Portnoy D. A., Frankel F. R.. ( 1998;). Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires d-alanine for growth. . Infect Immun 66:, 3552–3561.[PubMed]
    [Google Scholar]
  25. Vilchèze C., Morbidoni H. R., Weisbrod T. R., Iwamoto H., Kuo M., Sacchettini J. C., Jacobs W. R. Jr. ( 2000;). Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. . J Bacteriol 182:, 4059–4067. [CrossRef][PubMed]
    [Google Scholar]
  26. Wasserman S. A., Walsh C. T., Botstein D.. ( 1983;). Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. . J Bacteriol 153:, 1439–1450.[PubMed]
    [Google Scholar]
  27. Wei J. R., Krishnamoorthy V., Murphy K., Kim J. H., Schnappinger D., Alber T., Sassetti C. M., Rhee K. Y., Rubin E. J.. ( 2011;). Depletion of antibiotic targets has widely varying effects on growth. . Proc Natl Acad Sci U S A 108:, 4176–4181. [CrossRef][PubMed]
    [Google Scholar]
  28. Wells C. D., Cegielski J. P., Nelson L. J., Laserson K. F., Holtz T. H., Finlay A., Castro K. G., Weyer K.. ( 2007;). HIV infection and multidrug-resistant tuberculosis: the perfect storm. . J Infect Dis 196: (Suppl. 1), S86–S107. [CrossRef][PubMed]
    [Google Scholar]
  29. Wijsman H. J.. ( 1972;). The characterization of an alanine racemase mutant of Escherichia coli. . Genet Res 20:, 269–277. [CrossRef][PubMed]
    [Google Scholar]
  30. Zygmunt W. A.. ( 1963;). Antagonism of d-cycloserine inhibition of mycobacterial growth by d-alanine. . J Bacteriol 85:, 1217–1220.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054064-0
Loading
/content/journal/micro/10.1099/mic.0.054064-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error