1887

Abstract

Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both and , and the biological significance of this is not yet understood. ThyX is thought to be essential and a potential drug target. We therefore analysed and expression levels, their essentiality and roles in pathogenesis. We show that both and are expressed , and that this expression significantly increased within murine macrophages. Under all conditions tested, expression exceeded that of . Mutational studies show that is essential, confirming that the enzyme is a plausible drug target. The requirement for in the presence of implies that the essential function of ThyX is something other than dTMP synthase. We successfully deleted from the genome, and this deletion conferred an growth defect that was not observed . Presumably ThyX performs TS activity within Δ at a sufficient rate for normal growth, but the rate is less than optimal. We also demonstrate that deletion confers -aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053983-0
2012-02-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/308.html?itemId=/content/journal/micro/10.1099/mic.0.053983-0&mimeType=html&fmt=ahah

References

  1. Agrawal N., Lesley S. A., Kuhn P., Kohen A. ( 2004). Mechanistic studies of a flavin-dependent thymidylate synthase. Biochemistry 43:10295–10301 [View Article][PubMed]
    [Google Scholar]
  2. Ahmed N., Hasnain S. E. ( 2004). Genomics of Mycobacterium tuberculosis: old threats & new trends. Indian J Med Res 120:207–212[PubMed]
    [Google Scholar]
  3. Boldrin F., Casonato S., Dainese E., Sala C., Dhar N., Palù G., Riccardi G., Cole S. T., Manganelli R. ( 2010). Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 38:e134 [View Article][PubMed]
    [Google Scholar]
  4. Butcher P. D., Mangan J., Monahan I. M. ( 1998). Intracellular gene expression: analysis of RNA from mycobacteria in macrophages using RT-PCR. Methods in Molecular Biology, Mycobacteria Protocols 101285–306 Parish T., Stoker N. G. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  5. Butte A. ( 2002). The use and analysis of microarray data. Nat Rev Drug Discov 1:951–960 [View Article][PubMed]
    [Google Scholar]
  6. Carreras C. W., Santi D. V. ( 1995). The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762 [View Article][PubMed]
    [Google Scholar]
  7. Carroll P., Muttucumaru D. G., Parish T. ( 2005). Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis . Appl Environ Microbiol 71:3077–3084 [View Article][PubMed]
    [Google Scholar]
  8. Chuchana P., Marchand D., Nugoli M., Rodriguez C., Molinari N., Garcia-Sanz J. A. ( 2007). An adaptation of the LMS method to determine expression variations in profiling data. Nucleic Acids Res 35:e71 [View Article][PubMed]
    [Google Scholar]
  9. de Carvalho L. P. S., Zhao H., Dickinson C. E., Arango N. M., Lima C. D., Fischer S. M., Ouerfelli O., Nathan C., Rhee K. Y. ( 2010). Activity-based metabolomic profiling of enzymatic function: identification of Rv1248c as a mycobacterial 2-hydroxy-3-oxoadipate synthase. Chem Biol 17:323–332 [View Article][PubMed]
    [Google Scholar]
  10. Feuerriegel S., Köser C., Trübe L., Archer J., Rüsch Gerdes S., Richter E., Niemann S. ( 2010). Thr202Ala in thyA is a marker for the Latin American Mediterranean lineage of the Mycobacterium tuberculosis complex rather than para-aminosalicylic acid resistance. Antimicrob Agents Chemother 54:4794–4798 [View Article][PubMed]
    [Google Scholar]
  11. Fivian-Hughes A. S., Davis E. O. ( 2010). Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis . J Bacteriol 192:4348–4356 [View Article][PubMed]
    [Google Scholar]
  12. Fontán P., Aris V., Ghanny S., Soteropoulos P., Smith I. ( 2008). Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 76:717–725 [View Article][PubMed]
    [Google Scholar]
  13. Gattis S. G., Palfey B. A. ( 2005). Direct observation of the participation of flavin in product formation by thyX-encoded thymidylate synthase. J Am Chem Soc 127:832–833 [View Article][PubMed]
    [Google Scholar]
  14. Giladi M., Bitan-Banin G., Mevarech M., Ortenberg R. ( 2002). Genetic evidence for a novel thymidylate synthase in the halophilic archaeon Halobacterium salinarum and in Campylobacter jejuni . FEMS Microbiol Lett 216:105–109 [View Article][PubMed]
    [Google Scholar]
  15. Gopaul K. K. ( 2002). Transcription of the Mycobacterium tuberculosis recA gene. PhD thesis, University College London.
    [Google Scholar]
  16. Guo X. V., Monteleone M., Klotzsche M., Kamionka A., Hillen W., Braunstein M., Ehrt S., Schnappinger D. ( 2007). Silencing Mycobacterium smegmatis by using tetracycline repressors. J Bacteriol 189:4614–4623 [View Article][PubMed]
    [Google Scholar]
  17. Haydel S. E. ( 2010). Extensively drug-resistant tuberculosis: A sign of the times and an impetus for antimicrobial discovery. Pharmaceuticals (Basel) 3:2268–2290[PubMed] [CrossRef]
    [Google Scholar]
  18. Hunter J. H., Gujjar R., Pang C. K., Rathod P. K. ( 2008). Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX. PLoS ONE 3:e2237 [View Article][PubMed]
    [Google Scholar]
  19. Kan S. C., Liu J. S., Hu H. Y., Chang C. M., Lin W. D., Wang W. C., Hsu W. H. ( 2010). Biochemical characterization of two thymidylate synthases in Corynebacterium glutamicum NCHU 87078. Biochim Biophys Acta 1804:1751–1759[PubMed] [CrossRef]
    [Google Scholar]
  20. Koehn E. M., Fleischmann T., Conrad J. A., Palfey B. A., Lesley S. A., Mathews I. I., Kohen A. ( 2009). An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 458:919–923 [View Article][PubMed]
    [Google Scholar]
  21. Kögler M., Vanderhoydonck B., De Jonghe S., Rozenski J., Van Belle K., Herman J., Louat T., Parchina A., Sibley C. & other authors ( 2011). Synthesis and evaluation of 5-substituted 2′-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis . J Med Chem 54:4847–4862 [View Article][PubMed]
    [Google Scholar]
  22. Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. ( 2011). The challenge of new drug discovery for tuberculosis. Nature 469:483–490 [View Article][PubMed]
    [Google Scholar]
  23. Kuhn P., Lesley S. A., Mathews I. I., Canaves J. M., Brinen L. S., Dai X., Deacon A. M., Elsliger M. A., Eshaghi S. & other authors ( 2002). Crystal structure of Thy1, a thymidylate synthase complementing protein from Thermotoga maritima at 2.25 Å resolution. Proteins 49:142–145 [View Article][PubMed]
    [Google Scholar]
  24. Leduc D., Escartin F., Nijhout H. F., Reed M. C., Liebl U., Skouloubris S., Myllykallio H. ( 2007). Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria. J Bacteriol 189:8537–8545 [View Article][PubMed]
    [Google Scholar]
  25. Leung K. L., Yip C. W., Yeung Y. L., Wong K. L., Chan W. Y., Chan M. Y., Kam K. M. ( 2010). Usefulness of resistant gene markers for predicting treatment outcome on second-line anti-tuberculosis drugs. J Appl Microbiol 109:2087–2094 [View Article][PubMed]
    [Google Scholar]
  26. Mathys V., Wintjens R., Lefevre P., Bertout J., Singhal A., Kiass M., Kurepina N., Wang X. M., Mathema B. & other authors ( 2009). Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis . Antimicrob Agents Chemother 53:2100–2109 [View Article][PubMed]
    [Google Scholar]
  27. Myllykallio H., Lipowski G., Leduc D., Filee J., Forterre P., Liebl U. ( 2002). An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297:105–107 [View Article][PubMed]
    [Google Scholar]
  28. Myllykallio H., Leduc D., Filee J., Liebl U. ( 2003). Life without dihydrofolate reductase FolA. Trends Microbiol 11:220–223 [View Article][PubMed]
    [Google Scholar]
  29. Nopponpunth V., Sirawaraporn W., Greene P. J., Santi D. V. ( 1999). Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli . J Bacteriol 181:6814–6821[PubMed]
    [Google Scholar]
  30. Parish T., Stoker N. G. ( 2000). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975[PubMed]
    [Google Scholar]
  31. Park M., Cho S., Lee H., Sibley C. H., Rhie H. ( 2010). Alternative thymidylate synthase, ThyX, involved in Corynebacterium glutamicum ATCC 13032 survival during stationary growth phase. FEMS Microbiol Lett 307:128–134 [View Article][PubMed]
    [Google Scholar]
  32. Pashley C. A., Parish T. ( 2003). Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis . FEMS Microbiol Lett 229:211–215 [View Article][PubMed]
    [Google Scholar]
  33. Rengarajan J., Sassetti C. M., Naroditskaya V., Sloutsky A., Bloom B. R., Rubin E. J. ( 2004). The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282 [View Article][PubMed]
    [Google Scholar]
  34. Rickman L., Scott C., Hunt D. M., Hutchinson T., Menéndez M. C., Whalan R., Hinds J., Colston M. J., Green J., Buxton R. S. ( 2005). A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol Microbiol 56:1274–1286 [View Article][PubMed]
    [Google Scholar]
  35. Rossi F., Khanduja J. S., Bartoluzzi A., Houghton J., Sander P., Güthlein C., Davis E. O., Springer B., Böttger E. C. & other authors ( 2011). The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res 39:7316–7328 [View Article][PubMed]
    [Google Scholar]
  36. Sampathkumar P., Turley S., Ulmer J. E., Rhie H. G., Sibley C. H., Hol W. G. J. ( 2005). Structure of the Mycobacterium tuberculosis flavin dependent thymidylate synthase (MtbThyX) at 2.0 Å resolution. J Mol Biol 352:1091–1104 [View Article][PubMed]
    [Google Scholar]
  37. Sampathkumar P., Turley S., Sibley C. H., Hol W. G. J. ( 2006). NADP+ expels both the co-factor and a substrate analog from the Mycobacterium tuberculosis ThyX active site: opportunities for anti-bacterial drug design. J Mol Biol 360:1–6 [View Article][PubMed]
    [Google Scholar]
  38. Sassetti C. M., Boyd D. H., Rubin E. J. ( 2003). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84 [View Article][PubMed]
    [Google Scholar]
  39. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D. & other authors ( 2003). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 [View Article][PubMed]
    [Google Scholar]
  40. Spivey V. L., Molle V., Whalan R. H., Rodgers A., Leiba J., Stach L., Walker K. B., Smerdon S. J., Buxton R. S. ( 2011). Forkhead-associated (FHA) domain containing ABC transporter Rv1747 is positively regulated by Ser/Thr phosphorylation in Mycobacterium tuberculosis . J Biol Chem 286:26198–26209 [View Article][PubMed]
    [Google Scholar]
  41. Springer B., Sander P., Sedlacek L., Ellrott K., Böttger E. C. ( 2001). Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int J Med Microbiol 290:669–675 [View Article][PubMed]
    [Google Scholar]
  42. Talaat A. M., Lyons R., Howard S. T., Johnston S. A. ( 2004). The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 101:4602–4607 [View Article][PubMed]
    [Google Scholar]
  43. Ulmer J. E., Boum Y., Thouvenel C. D., Myllykallio H., Sibley C. H. ( 2008). Functional analysis of the Mycobacterium tuberculosis FAD-dependent thymidylate synthase, ThyX, reveals new amino acid residues contributing to an extended ThyX motif. J Bacteriol 190:2056–2064 [View Article][PubMed]
    [Google Scholar]
  44. WHO ( 2009). Global tuberculosis control: epidemiology, strategy, financing Geneva, Switzerland: WHO;
    [Google Scholar]
  45. Zhang Z. D., Zhao Y. L., Li Z. H., Jia H. Y., Liu Y. H., Chen X., Liu Z. Q., Du B. P., Xing A. Y., Ma Y. ( 2007). [Mutations in the thymidylate synthase gene is a major mechanism in the para-aminosalicylic acid resistance of M. tuberculosis]. Zhonghua Jie He He Hu Xi Za Zhi 30:683–685[PubMed]
    [Google Scholar]
  46. Zignol M., Hosseini M. S., Wright A., Weezenbeek C. L., Nunn P., Watt C. J., Williams B. G., Dye C. ( 2006). Global incidence of multidrug-resistant tuberculosis. J Infect Dis 194:479–485 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.053983-0
Loading
/content/journal/micro/10.1099/mic.0.053983-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error