1887

Abstract

(group A Streptococcus; GAS) is always of clinical significance in wounds where it can initiate infection, destroy skin grafts and persist as a biofilm. Manuka honey has broad spectrum antimicrobial activity and its use in the clinical setting is beginning to gain acceptance with the continuing emergence of antibiotic resistance and the inadequacy of established systemic therapies; novel inhibitors may affect clinical practice. In this study, the effect of manuka honey on (M28) was investigated with planktonic and biofilm cultures using MIC, MBC, microscopy and aggregation efficiency. Bactericidal effects were found in both planktonic cultures and biofilms, although higher concentrations of manuka honey were needed to inhibit biofilms. Abrogation of adherence and intercellular aggregation was observed. Manuka honey permeated 24 h established biofilms of resulting in significant cell death and dissociation of cells from the biofilm. Sublethal concentrations of manuka honey effectively prevented the binding of to the human tissue protein fibronectin, but did not inhibit binding to fibrinogen. The observed inhibition of fibronectin binding was confirmed by a reduction in the expression of genes encoding two major fibronectin-binding streptococcal surface proteins, Sof and SfbI. These findings indicate that manuka honey has potential in the topical treatment of wounds containing .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053959-0
2012-03-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/781.html?itemId=/content/journal/micro/10.1099/mic.0.053959-0&mimeType=html&fmt=ahah

References

  1. Adams C. J., Manley-Harris M., Molan P. C.. ( 2009;). The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res344:1050–1053 [CrossRef][PubMed]
    [Google Scholar]
  2. Al-Waili N. S., Akmal M., Al-Waili F. S., Saloom K. Y., Ali A.. ( 2005;). The antimicrobial potential of honey from United Arab Emirates on some microbial isolates. Med Sci Monit11:BR433–BR438[PubMed]
    [Google Scholar]
  3. Alandejani T., Marsan J., Ferris W., Slinger R., Chan F.. ( 2009;). Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngol Head Neck Surg141:114–118 [CrossRef][PubMed]
    [Google Scholar]
  4. Andrews J.. ( 2011;). BSAC Methods for Antimicrobial Susceptibility Testing British Society for Antimicrobial Chemotherapy;http://www.bsac.org.uk/Susceptibility+Testing/Susceptibility+Testing+Guide
    [Google Scholar]
  5. Badet C., Quero F.. ( 2011;). The in vitro effect of manuka honeys on growth and adherence of oral bacteria. Anaerobe17:19–22 [CrossRef][PubMed]
    [Google Scholar]
  6. Baldassarri L., Creti R., Recchia S., Imperi M., Facinelli B., Giovanetti E., Pataracchia M., Alfarone G., Orefici G.. ( 2006;). Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol44:2721–2727 [CrossRef][PubMed]
    [Google Scholar]
  7. Blair S. E., Cokcetin N. N., Harry E. J., Carter D. A.. ( 2009;). The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. Eur J Clin Microbiol Infect Dis28:1199–1208 [CrossRef][PubMed]
    [Google Scholar]
  8. Bogdanov S., Jurendic T., Sieber R., Gallmann P.. ( 2008;). Honey for nutrition and health: a review. J Am Coll Nutr27:677–689[PubMed][CrossRef]
    [Google Scholar]
  9. Bonifait L., Grignon L., Grenier D.. ( 2008;). Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance. Appl Environ Microbiol74:4969–4972 [CrossRef][PubMed]
    [Google Scholar]
  10. Bugrysheva J. V., Scott J. R.. ( 2010;). Regulation of virulence gene expression in Streptococcus pyogenes: determinants of differential mRNA decay. RNA Biol7:569–572 [CrossRef][PubMed]
    [Google Scholar]
  11. Conley J., Olson M. E., Cook L. S., Ceri H., Phan V., Davies H. D.. ( 2003;). Biofilm formation by group a streptococci: is there a relationship with treatment failure?. J Clin Microbiol41:4043–4048 [CrossRef][PubMed]
    [Google Scholar]
  12. Cooper R. A.. ( 2005;). Understanding wound infection. EWMA Position Document2–5 London: MEP Ltd;
    [Google Scholar]
  13. Cooper R.. ( 2008;). Using honey to inhibit wound pathogens. Nurs Times104:46–49[PubMed]
    [Google Scholar]
  14. Cooper R. A., Halas E., Molan P. C.. ( 2002a;). The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil23:366–370 [CrossRef][PubMed]
    [Google Scholar]
  15. Cooper R. A., Molan P. C., Harding K. G.. ( 2002b;). The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol93:857–863 [CrossRef][PubMed]
    [Google Scholar]
  16. Cooper R. A., Jenkins L., Henriques A. F., Duggan R. S., Burton N. F.. ( 2010;). Absence of bacterial resistance to medical-grade manuka honey. Eur J Clin Microbiol Infect Dis29:1237–1241 [CrossRef][PubMed]
    [Google Scholar]
  17. Cooper R. A., Lindsay E., Molan P. C.. ( 2011;). Testing the susceptibility to manuka honey of streptococci isolated from wound swabs. J Apiprod Apimed Sci3:117–122 [CrossRef]
    [Google Scholar]
  18. Courtney H. S., Pownall H. J.. ( 2010;). The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins. J Biomed Biotechnol2010:956071 [CrossRef][PubMed]
    [Google Scholar]
  19. Courtney H. S., Hasty D. L., Dale J. B.. ( 2003;). Serum opacity factor (SOF) of Streptococcus pyogenes evokes antibodies that opsonize homologous and heterologous SOF-positive serotypes of group A streptococci. Infect Immun71:5097–5103 [CrossRef][PubMed]
    [Google Scholar]
  20. Edwards A. M., Manetti A. G. O., Falugi F., Zingaretti C., Capo S., Buccato S., Bensi G., Telford J. L., Margarit I., Grandi G.. ( 2008;). Scavenger receptor gp340 aggregates group A streptococci by binding pili. Mol Microbiol68:1378–1394 [CrossRef][PubMed]
    [Google Scholar]
  21. Enright M. C., Spratt B. G., Kalia A., Cross J. H., Bessen D. E.. ( 2001;). Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun69:2416–2427 [CrossRef][PubMed]
    [Google Scholar]
  22. Goodfellow A. M., Hibble M., Talay S. R., Kreikemeyer B., Currie B. J., Sriprakash K. S., Chhatwal G. S.. ( 2000;). Distribution and antigenicity of fibronectin binding proteins (SfbI and SfbII) of Streptococcus pyogenes clinical isolates from the northern territory, Australia. J Clin Microbiol38:389–392[PubMed]
    [Google Scholar]
  23. Gottrup F.. ( 2008;). Trends in surgical wound healing. Scand J Surg97:220–225, discussion 225–226[PubMed]
    [Google Scholar]
  24. Green N. M., Zhang S., Porcella S. F., Nagiec M. J., Barbian K. D., Beres S. B., LeFebvre R. B., Musser J. M.. ( 2005;). Genome sequence of a serotype M28 strain of group a streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. J Infect Dis192:760–770 [CrossRef][PubMed]
    [Google Scholar]
  25. Guo S., Dipietro L. A.. ( 2010;). Factors affecting wound healing. J Dent Res89:219–229 [CrossRef][PubMed]
    [Google Scholar]
  26. Henriques A. F., Jenkins R. E., Burton N. F., Cooper R. A.. ( 2010;). The intracellular effects of manuka honey on Staphylococcus aureus . Eur J Clin Microbiol Infect Dis29:45–50 [CrossRef][PubMed]
    [Google Scholar]
  27. Henriques A. F., Jenkins R. E., Burton N. F., Cooper R. A.. ( 2011;). The effect of manuka honey on the structure of Pseudomonas aeruginosa . Eur J Clin Microbiol Infect Dis30:167–171 [CrossRef][PubMed]
    [Google Scholar]
  28. Hryniewicz W., Lipinski B., Jeljaszewicz J.. ( 1972;). Nature of the interaction between M protein of Streptococcus pyogenes and fibrinogen. J Infect Dis125:626–630 [CrossRef][PubMed]
    [Google Scholar]
  29. Jaffe J., Natanson-Yaron S., Caparon M. G., Hanski E.. ( 1996;). Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol Microbiol21:373–384 [CrossRef][PubMed]
    [Google Scholar]
  30. Jakubovics N. S., Kerrigan S. W., Nobbs A. H., Strömberg N., van Dolleweerd C. J., Cox D. M., Kelly C. G., Jenkinson H. F.. ( 2005;). Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun73:6629–6638 [CrossRef][PubMed]
    [Google Scholar]
  31. Jakubovics N. S., Brittan J. L., Dutton L. C., Jenkinson H. F.. ( 2009;). Multiple adhesin proteins on the cell surface of Streptococcus gordonii are involved in adhesion to human fibronectin. Microbiology155:3572–3580 [CrossRef][PubMed]
    [Google Scholar]
  32. James G. A., Swogger E., Wolcott R., Pulcini E., Secor P., Sestrich J., Costerton J. W., Stewart P. S.. ( 2008;). Biofilms in chronic wounds. Wound Repair Regen16:37–44 [CrossRef][PubMed]
    [Google Scholar]
  33. Jeng A., Sakota V., Li Z., Datta V., Beall B., Nizet V.. ( 2003;). Molecular genetic analysis of a group A Streptococcus operon encoding serum opacity factor and a novel fibronectin-binding protein, SfbX. J Bacteriol185:1208–1217 [CrossRef][PubMed]
    [Google Scholar]
  34. Jenkins R., Burton N., Cooper R.. ( 2011a;). Effect of manuka honey on the expression of universal stress protein A in meticillin-resistant Staphylococcus aureus . Int J Antimicrob Agents37:373–376 [CrossRef][PubMed]
    [Google Scholar]
  35. Jenkins R., Burton N., Cooper R.. ( 2011b;). Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus . J Antimicrob Chemother66:2536–2542 [CrossRef][PubMed]
    [Google Scholar]
  36. Jervis-Bardy J., Foreman A., Bray S., Tan L., Wormald P. J.. ( 2011;). Methylglyoxal-infused honey mimics the anti-Staphylococcus aureus biofilm activity of manuka honey: potential implication in chronic rhinosinusitis. Laryngoscope121:1104–1107 [CrossRef][PubMed]
    [Google Scholar]
  37. Kalia A., Enright M. C., Spratt B. G., Bessen D. E.. ( 2001;). Directional gene movement from human-pathogenic to commensal-like streptococci. Infect Immun69:4858–4869 [CrossRef][PubMed]
    [Google Scholar]
  38. Kehoe M. A.. ( 1994;). Cell-wall-associated proteins in Gram positive bacteria. Bacterial Cell Wall, New Comprehensive Biochemistryvol. 27217–261 Ghuysen J.-M., Hakenbeck R.. Amsterdam: Elsevier; [CrossRef]
    [Google Scholar]
  39. Köller T., Manetti A. G., Kreikemeyer B., Lembke C., Margarit I., Grandi G., Podbielski A.. ( 2010;). Typing of the pilus-protein-encoding FCT region and biofilm formation as novel parameters in epidemiological investigations of Streptococcus pyogenes isolates from various infection sites. J Med Microbiol59:442–452 [CrossRef][PubMed]
    [Google Scholar]
  40. Kreikemeyer B., McIver K. S., Podbielski A.. ( 2003;). Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol11:224–232 [CrossRef][PubMed]
    [Google Scholar]
  41. Kreikemeyer B., Oehmcke S., Nakata M., Hoffrogge R., Podbielski A.. ( 2004;). Streptococcus pyogenes fibronectin-binding protein F2: expression profile, binding characteristics, and impact on eukaryotic cell interactions. J Biol Chem279:15850–15859 [CrossRef][PubMed]
    [Google Scholar]
  42. Kreikemeyer B., Gámez G., Margarit I., Giard J. C., Hammerschmidt S., Hartke A., Podbielski A.. ( 2011;). Genomic organization, structure, regulation and pathogenic role of pilus constituents in major pathogenic Streptococci and Enterococci. Int J Med Microbiol301:240–251 [CrossRef][PubMed]
    [Google Scholar]
  43. Kubo M., Van de Water L., Plantefaber L. C., Mosesson M. W., Simon M., Tonnesen M. G., Taichman L., Clark R. A.. ( 2001;). Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol117:1369–1381 [CrossRef][PubMed]
    [Google Scholar]
  44. Lannergård J., Flock M., Johansson S., Flock J. I., Guss B.. ( 2005;). Studies of fibronectin-binding proteins of Streptococcus equi . Infect Immun73:7243–7251 [CrossRef][PubMed]
    [Google Scholar]
  45. Lembke C., Podbielski A., Hidalgo-Grass C., Jonas L., Hanski E., Kreikemeyer B.. ( 2006;). Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol72:2864–2875 [CrossRef][PubMed]
    [Google Scholar]
  46. Luo F., Lizano S., Banik S., Zhang H., Bessen D. E.. ( 2008;). Role of Mga in group A streptococcal infection at the skin epithelium. Microb Pathog45:217–224 [CrossRef][PubMed]
    [Google Scholar]
  47. Lyon W. R., Gibson C. M., Caparon M. G.. ( 1998;). A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes . EMBO J17:6263–6275 [CrossRef][PubMed]
    [Google Scholar]
  48. Maddocks S. E., Wright C. J., Nobbs A. H., Brittan J. L., Franklin L., Strömberg N., Kadioglu A., Jepson M. A., Jenkinson H. F.. ( 2011;). Streptococcus pyogenes antigen I/II-family polypeptide AspA shows differential ligand-binding properties and mediates biofilm formation. Mol Microbiol81:1034–1049 [CrossRef][PubMed]
    [Google Scholar]
  49. Mavric E., Wittmann S., Barth G., Henle T.. ( 2008;). Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res52:483–489 [CrossRef][PubMed]
    [Google Scholar]
  50. Medina E., Schulze K., Chhatwal G. S., Guzmán C. A.. ( 2000;). Nonimmune interaction of the SfbI protein of Streptococcus pyogenes with the immunoglobulin G F(ab′)(2) fragment. Infect Immun68:4786–4788 [CrossRef][PubMed]
    [Google Scholar]
  51. Merckoll P., Jonassen T. Ø., Vad M. E., Jeansson S. L., Melby K. K.. ( 2009;). Bacteria, biofilm and honey: a study of the effects of honey on ‘planktonic’ and biofilm-embedded chronic wound bacteria. Scand J Infect Dis41:341–347 [CrossRef][PubMed]
    [Google Scholar]
  52. Miles A. A., Misra S. S., Irwin J. O.. ( 1938;). The estimation of the bactericidal power of the blood. J Hyg (Lond)38:732–749 [CrossRef][PubMed]
    [Google Scholar]
  53. Molan P. C.. ( 1992;). The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World73:5–28[CrossRef]
    [Google Scholar]
  54. Nassar H. M., Li M., Gregory R. L.. ( 2012;). Effect of honey on Streptococcus mutans growth and biofilm formation. Appl Environ Microbiol78:536–540[PubMed][CrossRef]
    [Google Scholar]
  55. Nobbs A. H., Lamont R. J., Jenkinson H. F.. ( 2009;). Streptococcus adherence and colonization. Microbiol Mol Biol Rev73:407–450 [CrossRef][PubMed]
    [Google Scholar]
  56. Ogunmwonyi I. H., Mazomba N., Mabinya L., Ngwenya E., Green E., Akinpelu D. A., Olaniran A. O., Okoh A. I.. ( 2010;). In vitro time-kill studies of antibacterial agents from putative marine Streptomyces species isolated from the Nahoon beach, South Africa. African J Pharm Pharmacol4:908–916
    [Google Scholar]
  57. Okahashi N., Nakata M., Sakurai A., Terao Y., Hoshino T., Yamaguchi M., Isoda R., Sumitomo T., Nakano K.. & other authors ( 2010;). Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun391:1192–1196 [CrossRef][PubMed]
    [Google Scholar]
  58. Okhiria O. A., Henriques A. F. M., Burton N. F., Cooper R. A.. ( 2009;). Honey modulates biofilms of Pseudomonas aeruginosa in a time and dose dependent manner. J Apiprod ApiMed Sci1:6–10 [CrossRef]
    [Google Scholar]
  59. Oliveira M. R., Napimoga M. H., Cogo K., Gonçalves R. B., Macedo M. L., Freire M. G., Groppo F. C.. ( 2007;). Inhibition of bacterial adherence to saliva-coated through plant lectins. J Oral Sci49:141–145 [CrossRef][PubMed]
    [Google Scholar]
  60. Rakonjac J. V., Robbins J. C., Fischetti V. A.. ( 1995;). DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect Immun63:622–631[PubMed]
    [Google Scholar]
  61. Ramachandran V., McArthur J. D., Behm C. E., Gutzeit C., Dowton M., Fagan P. K., Towers R., Currie B., Sriprakash K. S., Walker M. J.. ( 2004;). Two distinct genotypes of prtF2, encoding a fibronectin binding protein, and evolution of the gene family in Streptococcus pyogenes . J Bacteriol186:7601–7609 [CrossRef][PubMed]
    [Google Scholar]
  62. Rhoads D. D., Wolcott R. D., Percival S. L.. ( 2008;). Biofilms in wounds: management strategies. J Wound Care17:502–508[PubMed][CrossRef]
    [Google Scholar]
  63. Terao Y., Kawabata S., Kunitomo E., Murakami J., Nakagawa I., Hamada S.. ( 2001;). Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol42:75–86 [CrossRef][PubMed]
    [Google Scholar]
  64. Terao Y., Kawabata S., Nakata M., Nakagawa I., Hamada S.. ( 2002;). Molecular characterization of a novel fibronectin-binding protein of Streptococcus pyogenes strains isolated from toxic shock-like syndrome patients. J Biol Chem277:47428–47435 [CrossRef][PubMed]
    [Google Scholar]
  65. Thenmozhi R., Balaji K., Kumar R., Rao T. S., Pandian S. K.. ( 2011;). Characterization of biofilms in different clinical M serotypes of Streptococcus pyogenes . J Basic Microbiol51:196–204 [CrossRef][PubMed]
    [Google Scholar]
  66. Voidarou C., Alexopoulos A., Plessas S., Karapanou A., Mantzourani I., Stavropoulou E., Fotou K., Tzora A., Skoufos I., Bezirtzoglou E.. ( 2011;). Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe17:375–379 [CrossRef][PubMed]
    [Google Scholar]
  67. Werdin F., Tennenhaus M., Schaller H. E., Rennekampff H. O.. ( 2009;). Evidence-based management strategies for treatment of chronic wounds. Eplasty9:e19[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053959-0
Loading
/content/journal/micro/10.1099/mic.0.053959-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error