1887

Abstract

The strain Shirota used in this study has in the genome four putative thioredoxin genes designated , , and , and one putative thioredoxin reductase gene designated . To elucidate the roles of the thioredoxins and the thioredoxin reductase against oxidative stress in , we constructed gene disruption mutants, in which each of the genes , and , or both and were disrupted, and we characterized their growth and response to oxidative stresses. In aerobic conditions, the (MS108) and the (MS109) mutants had moderate growth defects, and the double mutant (MS110) had a severe growth defect, which was characterized by elongation of doubling time and a lower final turbidity level. Furthermore, the mutant (MS111), which is defective in thioredoxin reductase, lost the ability to grow under aerobic conditions, although it grew partially under anaerobic conditions. The growth of these mutants, however, could be substantially restored by the addition of dithiothreitol or reduced glutathione. In addition, MS110 and MS111 were more sensitive to hydrogen peroxide and disulfide stress than the wild-type. In particular, the stress sensitivity of MS111 was significantly increased. On the other hand, transcription of all these genes was only weakly affected by these oxidative stresses. Taken together, these results suggest that the thioredoxin–thioredoxin reductase system is the major thiol/disulfide redox system and is essential to allow the facultative anaerobe to grow under aerobic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053942-0
2012-04-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/953.html?itemId=/content/journal/micro/10.1099/mic.0.053942-0&mimeType=html&fmt=ahah

References

  1. Ai L., Chen C., Zhou F., Wang L., Zhang H., Chen W., Guo B.. ( 2011;). Complete genome sequence of the probiotic strain Lactobacillus casei BD-II. J Bacteriol193:3160–3161 [CrossRef][PubMed]
    [Google Scholar]
  2. Akif M., Khare G., Tyagi A. K., Mande S. C., Sardesai A. A.. ( 2008;). Functional studies of multiple thioredoxins from Mycobacterium tuberculosis . J Bacteriol190:7087–7095 [CrossRef][PubMed]
    [Google Scholar]
  3. Altermann E., Russell W. M., Azcarate-Peril M. A., Barrangou R., Buck B. L., McAuliffe O., Souther N., Dobson A., Duong T.. & other authors ( 2005;). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A102:3906–3912 [CrossRef][PubMed]
    [Google Scholar]
  4. Arnér E. S., Holmgren A.. ( 2000;). Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem267:6102–6109 [CrossRef][PubMed]
    [Google Scholar]
  5. Asahara T., Nomoto K., Watanuki M., Yokokura T.. ( 2001;). Antimicrobial activity of intraurethrally administered probiotic Lactobacillus casei in a murine model of Escherichia coli urinary tract infection. Antimicrob Agents Chemother45:1751–1760 [CrossRef][PubMed]
    [Google Scholar]
  6. Cai H., Thompson R., Budinich M. F., Broadbent J. R., Steele J. L.. ( 2009;). Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol1:239–257 [CrossRef][PubMed]
    [Google Scholar]
  7. Carmel-Harel O., Storz G.. ( 2000;). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol54:439–461 [CrossRef][PubMed]
    [Google Scholar]
  8. Chaillou S., Champomier-Vergès M. C., Cornet M., Crutz-Le Coq A. M., Dudez A. M., Martin V., Beaufils S., Darbon-Rongère E., Bossy R.. & other authors ( 2005;). The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol23:1527–1533 [CrossRef][PubMed]
    [Google Scholar]
  9. Chang S. K., Hassan H. M.. ( 1997;). Characterization of superoxide dismutase in Streptococcus thermophilus . Appl Environ Microbiol63:3732–3735[PubMed]
    [Google Scholar]
  10. Chen C., Ai L., Zhou F., Wang L., Zhang H., Chen W., Guo B.. ( 2011;). Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol193:3419–3420 [CrossRef][PubMed]
    [Google Scholar]
  11. Collin V., Issakidis-Bourguet E., Marchand C., Hirasawa M., Lancelin J. M., Knaff D. B., Miginiac-Maslow M.. ( 2003;). The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem278:23747–23752 [CrossRef][PubMed]
    [Google Scholar]
  12. Comtois S. L., Gidley M. D., Kelly D. J.. ( 2003;). Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori . Microbiology149:121–129 [CrossRef][PubMed]
    [Google Scholar]
  13. Fahey R. C., Brown W. C., Adams W. B., Worsham M. B.. ( 1978;). Occurrence of glutathione in bacteria. J Bacteriol133:1126–1129[PubMed]
    [Google Scholar]
  14. Goffin P., Lorquet F., Kleerebezem M., Hols P.. ( 2004;). Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase. J Bacteriol186:6661–6666 [CrossRef][PubMed]
    [Google Scholar]
  15. Gopal S., Borovok I., Ofer A., Yanku M., Cohen G., Goebel W., Kreft J., Aharonowitz Y.. ( 2005;). A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol187:3839–3847 [CrossRef][PubMed]
    [Google Scholar]
  16. Higuchi M., Shimada M., Yamamoto Y., Hayashi T., Koga T., Kamio Y.. ( 1993;). Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans . J Gen Microbiol139:2343–2351[PubMed][CrossRef]
    [Google Scholar]
  17. Higuchi M., Yamamoto Y., Poole L. B., Shimada M., Sato Y., Takahashi N., Kamio Y.. ( 1999;). Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans . J Bacteriol181:5940–5947[PubMed]
    [Google Scholar]
  18. Hisabori T., Motohashi K., Hosoya-Matsuda N., Ueoka-Nakanishi H., Romano P. G.. ( 2007;). Towards a functional dissection of thioredoxin networks in plant cells. Photochem Photobiol83:145–151[PubMed]
    [Google Scholar]
  19. Holmgren A.. ( 1985;). Thioredoxin. Annu Rev Biochem54:237–271 [CrossRef][PubMed]
    [Google Scholar]
  20. Janowiak B. E., Griffith O. W.. ( 2005;). Glutathione synthesis in Streptococcus agalactiae. One protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem280:11829–11839 [CrossRef][PubMed]
    [Google Scholar]
  21. Kiwaki M., Shimizu-Kadota M.. ( 2002;). Development of genetic manipulation systems and application to genetic research in Lactobacillus casei strain Shirota. Biosci Microflora20:121–129[CrossRef]
    [Google Scholar]
  22. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M.. & other authors ( 2003;). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995 [CrossRef][PubMed]
    [Google Scholar]
  23. Kono Y., Fridovich I.. ( 1983;). Isolation and characterization of the pseudocatalase of Lactobacillus plantarum . J Biol Chem258:6015–6019[PubMed]
    [Google Scholar]
  24. Kosower N. S., Kosower E. M.. ( 1995;). Diamide: an oxidant probe for thiols. Methods Enzymol251:123–133 [CrossRef][PubMed]
    [Google Scholar]
  25. Laurent T. C., Moore E. C., Reichard P.. ( 1964;). Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem239:3436–3444[PubMed]
    [Google Scholar]
  26. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V.. & other authors ( 2006;). Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A103:15611–15616 [CrossRef][PubMed]
    [Google Scholar]
  27. Matsumoto S., Hara T., Hori T., Mitsuyama K., Nagaoka M., Tomiyasu N., Suzuki A., Sata M.. ( 2005;). Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol140:417–426 [CrossRef][PubMed]
    [Google Scholar]
  28. Matsuzaki T., Takagi A., Ikemura H., Matsuguchi T., Yokokura T.. ( 2004;). Antitumor activity and action mechanisms of Lactobacillus casei through the regulation of immune responses. Biofactors22:63–66 [CrossRef][PubMed]
    [Google Scholar]
  29. Mazé A., Boël G., Zúñiga M., Bourand A., Loux V., Yebra M. J., Monedero V., Correia K., Jacques N.. & other authors ( 2010;). Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol192:2647–2648 [CrossRef][PubMed]
    [Google Scholar]
  30. Miyoshi A., Rochat T., Gratadoux J. J., Le Loir Y., Oliveira S. C., Langella P., Azevedo V.. ( 2003;). Oxidative stress in Lactococcus lactis . Genet Mol Res2:348–359[PubMed]
    [Google Scholar]
  31. Möller M. C., Hederstedt L.. ( 2008;). Extracytoplasmic processes impaired by inactivation of trxA (thioredoxin gene) in Bacillus subtilis . J Bacteriol190:4660–4665 [CrossRef][PubMed]
    [Google Scholar]
  32. Reott M. A., Parker A. C., Rocha E. R., Smith C. J.. ( 2009;). Thioredoxins in redox maintenance and survival during oxidative stress of Bacteroides fragilis . J Bacteriol191:3384–3391 [CrossRef][PubMed]
    [Google Scholar]
  33. Rocha E. R., Tzianabos A. O., Smith C. J.. ( 2007;). Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis . J Bacteriol189:8015–8023 [CrossRef][PubMed]
    [Google Scholar]
  34. Sambrook J. W., Russel D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  35. Sanders J. W., Leenhouts K. J., Haandrikman A. J., Venema G., Kok J.. ( 1995;). Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J Bacteriol177:5254–5260[PubMed]
    [Google Scholar]
  36. Scharf C., Riethdorf S., Ernst H., Engelmann S., Völker U., Hecker M.. ( 1998;). Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis . J Bacteriol180:1869–1877[PubMed]
    [Google Scholar]
  37. Sedewitz B., Schleifer K. H., Götz F.. ( 1984;). Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum . J Bacteriol160:462–465[PubMed]
    [Google Scholar]
  38. Seki M., Iida K., Saito M., Nakayama H., Yoshida S.. ( 2004;). Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J Bacteriol186:2046–2051 [CrossRef][PubMed]
    [Google Scholar]
  39. Seo D., Kamino K., Inoue K., Sakurai H.. ( 2004;). Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC . Arch Microbiol182:80–89 [CrossRef][PubMed]
    [Google Scholar]
  40. Serrano L. M., Molenaar D., Wels M., Teusink B., Bron P. A., de Vos W. M., Smid E. J.. ( 2007;). Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact6:29 [CrossRef][PubMed]
    [Google Scholar]
  41. Shida K., Kiyoshima-Shibata J., Nagaoka M., Watanabe K., Nanno M.. ( 2006;). Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci89:3306–3317 [CrossRef][PubMed]
    [Google Scholar]
  42. Uziel O., Borovok I., Schreiber R., Cohen G., Aharonowitz Y.. ( 2004;). Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J Bacteriol186:326–334 [CrossRef][PubMed]
    [Google Scholar]
  43. van de Guchte M., Penaud S., Grimaldi C., Barbe V., Bryson K., Nicolas P., Robert C., Oztas S., Mangenot S.. & other authors ( 2006;). The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A103:9274–9279 [CrossRef][PubMed]
    [Google Scholar]
  44. Vido K., Diemer H., Van Dorsselaer A., Leize E., Juillard V., Gruss A., Gaudu P.. ( 2005;). Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis . J Bacteriol187:601–610 [CrossRef][PubMed]
    [Google Scholar]
  45. Yasuda E., Serata M., Sako T.. ( 2008;). Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol74:4746–4755 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhang W., Yu D., Sun Z., Wu R., Chen X., Chen W., Meng H., Hu S., Zhang H.. ( 2010;). Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China. J Bacteriol192:5268–5269 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053942-0
Loading
/content/journal/micro/10.1099/mic.0.053942-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error