1887

Abstract

Bioinformatic approaches employed to analyse intergenic regions of O1 (PAO1) for small RNAs (sRNAs) revealed a putative RNA gene encoded upstream of the nitrate assimilation operon Here, we show that this RNA, termed nitrogen assimilation leader A (NalA), represents the leader RNA of the operon, and that transcription is σ- and NtrC-dependent. A PAO1 deletion strain and a strain bearing a deletion in ORF PA1785 failed to grow on nitrate. PA1785 was identified as a homologue of the gene, the product of which is required for transcription of the nitrite/nitrate reductase operon. Collectively, these studies reveal that transcriptional antitermination of the leader RNA NalA is required for expression of the PAO1 nitrate assimilation operon, and that this process is governed by conserved functions in PAO1 and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053850-0
2012-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1543.html?itemId=/content/journal/micro/10.1099/mic.0.053850-0&mimeType=html&fmt=ahah

References

  1. Arai H., Kodama T., Igarashi Y.. ( 1997;). Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa . Mol Microbiol25:1141–1148 [CrossRef][PubMed]
    [Google Scholar]
  2. Atkinson M. R., Kamberov E. S., Weiss R. L., Ninfa A. J.. ( 1994;). Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC). J Biol Chem269:28288–28293[PubMed]
    [Google Scholar]
  3. Bateman A., Birney E., Durbin R., Eddy S. R., Howe K. L., Sonnhammer E. L. L.. ( 2000;). The Pfam protein families database. Nucleic Acids Res28:263–266 [CrossRef][PubMed]
    [Google Scholar]
  4. Bedzyk L., Wang T., Ye R. W.. ( 1999;). The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J Bacteriol181:2802–2806[PubMed]
    [Google Scholar]
  5. Cali B. M., Micca J. L., Stewart V.. ( 1989;). Genetic regulation of nitrate assimilation in Klebsiella pneumoniae M5al. J Bacteriol171:2666–2672[PubMed]
    [Google Scholar]
  6. Chai W., Stewart V.. ( 1998;). NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro . J Mol Biol283:339–351 [CrossRef][PubMed]
    [Google Scholar]
  7. Chai W., Stewart V.. ( 1999;). RNA sequence requirements for NasR-mediated, nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader. J Mol Biol292:203–216 [CrossRef][PubMed]
    [Google Scholar]
  8. Dombrecht B., Marchal K., Vanderleyden J., Michiels J.. ( 2002;). Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales . Genome Biol3:research0076 [CrossRef][PubMed]
    [Google Scholar]
  9. Farinha M. A., Kropinski A. M.. ( 1990;). Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol172:3496–3499[PubMed]
    [Google Scholar]
  10. Ferro-Luzzi Ames G., Nikaido K.. ( 1985;). Nitrogen regulation in Salmonella typhimurium. Identification of an ntrC protein-binding site and definition of a consensus binding sequence. EMBO J4:539–547[PubMed]
    [Google Scholar]
  11. Goldman B. S., Lin J. T., Stewart V.. ( 1994;). Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al. J Bacteriol176:5077–5085[PubMed]
    [Google Scholar]
  12. Goujon M., McWilliam H., Li W., Valentin F., Squizzato S., Paern J., Lopez R.. ( 2010;). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res38:Web ServerW695–W699 [CrossRef][PubMed]
    [Google Scholar]
  13. Gutierrez J. C., Ramos F., Ortner L., Tortolero M.. ( 1995;). nasST, two genes involved in the induction of the assimilatory nitrite–nitrate reductase operon (nasAB) of Azotobacter vinelandii . Mol Microbiol18:579–591 [CrossRef][PubMed]
    [Google Scholar]
  14. Hervás A. B., Canosa I., Little R., Dixon R., Santero E.. ( 2009;). NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida . J Bacteriol191:6123–6135 [CrossRef][PubMed]
    [Google Scholar]
  15. Heurlier K., Dénervaud V., Pessi G., Reimmann C., Haas D.. ( 2003;). Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAO1. J Bacteriol185:2227–2235 [CrossRef][PubMed]
    [Google Scholar]
  16. Hirschman J., Wong P.-K., Sei K., Keener J., Kustu S.. ( 1985;). Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a σ factor. Proc Natl Acad Sci U S A82:7525–7529 [CrossRef][PubMed]
    [Google Scholar]
  17. Holloway B. W., Krishnapillai V., Morgan A. F.. ( 1979;). Chromosomal genetics of Pseudomonas . Microbiol Rev43:73–102[PubMed]
    [Google Scholar]
  18. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:14339–14344 [CrossRef][PubMed]
    [Google Scholar]
  19. Janssen D. B., Herst P. M., Joosten H. M. L. J., van der Drift C.. ( 1981;). Nitrogen control in Pseudomonas aeruginosa: a role for glutamine in the regulation of the synthesis of NADP-dependent glutamate dehydrogenase, urease and histidase. Arch Microbiol128:398–402 [CrossRef][PubMed]
    [Google Scholar]
  20. Kamberov E. S., Atkinson M. R., Ninfa A. J.. ( 1995;). The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J Biol Chem270:17797–17807 [CrossRef][PubMed]
    [Google Scholar]
  21. Kawasaki S., Arai H., Kodama T., Igarashi Y.. ( 1997;). Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d 1 biosynthesis. J Bacteriol179:235–242[PubMed]
    [Google Scholar]
  22. Kustu S., Santero E., Keener J., Popham D., Weiss D.. ( 1989;). Expression of σ54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev53:367–376[PubMed]
    [Google Scholar]
  23. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal x version 2. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  24. Lenz D. H., Mok K. C., Lilley B. N., Kulkarni R. V., Wingreen N. S., Bassler B. L.. ( 2004;). The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae . Cell118:69–82 [CrossRef][PubMed]
    [Google Scholar]
  25. Li W., Lu C.-D.. ( 2007;). Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa . J Bacteriol189:5413–5420 [CrossRef][PubMed]
    [Google Scholar]
  26. Lin J. T., Stewart V.. ( 1996;). Nitrate and nitrite-mediated transcription antitermination control of nasF (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al. J Mol Biol256:423–435 [CrossRef][PubMed]
    [Google Scholar]
  27. Lin J. T., Stewart V.. ( 1997;). Nitrate assimilation by bacteria. Adv Microb Physiol39:1–30, 379 [CrossRef][PubMed]
    [Google Scholar]
  28. Lin J. T., Goldman B. S., Stewart V.. ( 1993;). Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J Bacteriol175:2370–2378[PubMed]
    [Google Scholar]
  29. Lin-Chao S., Bremer H.. ( 1986;). Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli . Mol Gen Genet203:143–149 [CrossRef][PubMed]
    [Google Scholar]
  30. Livny J., Brencic A., Lory S., Waldor M. K.. ( 2006;). Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res34:3484–3493 [CrossRef][PubMed]
    [Google Scholar]
  31. MacFarlane S. A., Merrick M.. ( 1985;). The nucleotide sequence of the nitrogen regulation gene ntrB and the glnAntrBC intergenic region of Klebsiella pneumoniae . Nucleic Acids Res13:7591–7606 [CrossRef][PubMed]
    [Google Scholar]
  32. Malm S., Tiffert Y., Micklinghoff J., Schultze S., Joost I., Weber I., Horst S., Ackermann B., Schmidt M. et al. ( 2009;). The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis . Microbiology155:1332–1339 [CrossRef][PubMed]
    [Google Scholar]
  33. Merrick M. J.. ( 1993;). In a class of its own – the RNA polymerase sigma factor σ54N). Mol Microbiol10:903–909 [CrossRef][PubMed]
    [Google Scholar]
  34. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Moreno-Vivián C., Cabello P., Martínez-Luque M., Blasco R., Castillo F.. ( 1999;). Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol181:6573–6584[PubMed]
    [Google Scholar]
  36. Morett E., Buck M.. ( 1989;). In vivo studies on the interaction of RNA polymerase-σ54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex. J Mol Biol210:65–77 [CrossRef][PubMed]
    [Google Scholar]
  37. Noriega C., Hassett D. J., Rowe J. J.. ( 2005;). The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa . Curr Microbiol51:419–424 [CrossRef][PubMed]
    [Google Scholar]
  38. Ogawa K., Akagawa E., Yamane K., Sun Z. W., LaCelle M., Zuber P., Nakano M. M.. ( 1995;). The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis . J Bacteriol177:1409–1413[PubMed]
    [Google Scholar]
  39. Platt T.. ( 1986;). Transcription termination and the regulation of gene expression. Annu Rev Biochem55:339–372 [CrossRef][PubMed]
    [Google Scholar]
  40. Potts J. R., Clarke P. H.. ( 1976;). The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa . J Gen Microbiol93:377–387[PubMed][CrossRef]
    [Google Scholar]
  41. Ramos F., Blanco G., Gutiérrez J. C., Luque F., Tortolero M.. ( 1993;). Identification of an operon involved in the assimilatory nitrate-reducing system of Azotobacter vinelandii . Mol Microbiol8:1145–1153 [CrossRef][PubMed]
    [Google Scholar]
  42. Rediers H., Vanderleyden J., De Mot R.. ( 2004;). Azotobacter vinelandii: a Pseudomonas in disguise?. Microbiology150:1117–1119 [CrossRef][PubMed]
    [Google Scholar]
  43. Richardson D. J., Berks B. C., Russell D. A., Spiro S., Taylor C. J.. ( 2001;). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci58:165–178 [CrossRef][PubMed]
    [Google Scholar]
  44. Rist M., Kertesz M. A.. ( 1998;). Construction of improved plasmid vectors for promoter characterization in Pseudomonas aeruginosa and other Gram-negative bacteria. FEMS Microbiol Lett169:179–183 [CrossRef][PubMed]
    [Google Scholar]
  45. Sattler I., Roessner C. A., Stolowich N. J., Hardin S. H., Harris-Haller L. W., Yokubaitis N. T., Murooka Y., Hashimoto Y., Scott A. I.. ( 1995;). Cloning, sequencing, and expression of the uroporphyrinogen III methyltransferase cobA gene of Propionibacterium freudenreichii (shermanii). J Bacteriol177:1564–1569[PubMed]
    [Google Scholar]
  46. Schobert M., Jahn D.. ( 2010;). Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. Int J Med Microbiol300:549–556 [CrossRef][PubMed]
    [Google Scholar]
  47. Schreiber K., Krieger R., Benkert B., Eschbach M., Arai H., Schobert M., Jahn D.. ( 2007;). The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J Bacteriol189:4310–4314 [CrossRef][PubMed]
    [Google Scholar]
  48. Setubal J. C., dos Santos P., Goldman B. S., Ertesvåg H., Espin G., Rubio L. M., Valla S., Almeida N. F., Balasubramanian D. et al. ( 2009;). Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol191:4534–4545 [CrossRef][PubMed]
    [Google Scholar]
  49. Shu C. J., Zhulin I. B.. ( 2002;). ANTAR: an RNA-binding domain in transcription antitermination regulatory proteins. Trends Biochem Sci27:3–5 [CrossRef][PubMed]
    [Google Scholar]
  50. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol1:784–791 [CrossRef]
    [Google Scholar]
  51. Simon R., O’Connell M., Labes M., Pühler A.. ( 1986;). Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol118:640–659 [CrossRef][PubMed]
    [Google Scholar]
  52. Sonnleitner E., Sorger-Domenigg T., Madej M. J., Findeiss S., Hackermüller J., Hüttenhofer A., Stadler P. F., Bläsi U., Moll I.. ( 2008;). Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology154:3175–3187 [CrossRef][PubMed]
    [Google Scholar]
  53. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J. et al. ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  54. Stülke J.. ( 2002;). Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Arch Microbiol177:433–440 [CrossRef][PubMed]
    [Google Scholar]
  55. Toukdarian A., Kennedy C.. ( 1986;). Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J5:399–407[PubMed]
    [Google Scholar]
  56. Van Alst N. E., Sherrill L. A., Iglewski B. H., Haidaris C. G.. ( 2009;). Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase. Can J Microbiol55:1133–1144 [CrossRef][PubMed]
    [Google Scholar]
  57. Vollack K.-U., Xie J., Härtig E., Römling U., Zumft W. G.. ( 1998;). Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa . Microbiology144:441–448 [CrossRef][PubMed]
    [Google Scholar]
  58. Wilson S. A., Wachira S. J., Norman R. A., Pearl L. H., Drew R. E.. ( 1996;). Transcription antitermination regulation of the Pseudomonas aeruginosa amidase operon. EMBO J15:5907–5916[PubMed]
    [Google Scholar]
  59. Winsor G. L., Van Rossum T., Lo R., Khaira B., Whiteside M. D., Hancock R. E., Brinkman F. S.. ( 2009;). Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res37:Database issueD483–D488 [CrossRef][PubMed]
    [Google Scholar]
  60. Wu Q., Stewart V.. ( 1998;). NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al. J Bacteriol180:1311–1322[PubMed]
    [Google Scholar]
  61. Ye R. W., Haas D., Ka J. O., Krishnapillai V., Zimmermann A., Baird C., Tiedje J. M.. ( 1995;). Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol177:3606–3609[PubMed]
    [Google Scholar]
  62. Yoon S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H., DeKievit T., Gardner P. R. et al. ( 2002;). Development and persistence of anaerobic Pseudomonas aeruginosa biofilms: relevance to pathogenesis and therapy of cystic fibrosis lung disease. Dev Cell3:593–603 [CrossRef][PubMed]
    [Google Scholar]
  63. Zumft W. G., Viebrock-Sambale A., Braun C.. ( 1990;). Nitrous oxide reductase from denitrifying Pseudomonas stutzeri. Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur J Biochem192:591–599 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053850-0
Loading
/content/journal/micro/10.1099/mic.0.053850-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error