1887

Abstract

has a flea-mammal-flea transmission cycle, and is a zoonotic pathogen that causes the systemic diseases bubonic and septicaemic plague in rodents and humans, as well as pneumonic plague in humans and non-human primates. Bubonic and pneumonic plague are quite different diseases that result from different routes of infection. Manganese (Mn) acquisition is critical for the growth and pathogenesis of a number of bacteria. The Yfe/Sit and/or MntH systems are the two prominent Mn transporters in Gram-negative bacteria. Previously we showed that the Yfe system transports Fe and Mn. Here we demonstrate that a mutation in or did not significantly affect aerobic growth under Mn-deficient conditions. A double mutant did exhibit a moderate growth defect which was alleviated by supplementation with Mn. No short-term energy-dependent uptake of Mn was observed in this double mutant. Like the promoter, the promoter was repressed by both Mn and Fe via Fur. Sequences upstream of the Fur binding sequence in the promoter converted an iron-repressible promoter to one that is also repressed by Mn and Fe. To our knowledge, this is the first report identifying promoter elements needed to alter cation specificities involved in transcriptional repression. Finally, the double mutant had an ~133-fold loss of virulence in a mouse model of bubonic plague but no virulence loss in the pneumonic plague model. This suggests that Mn availability, bacterial Mn requirements or Mn transporters used by are different in the lungs (pneumonic plague) compared with systemic disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053710-0
2012-03-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/804.html?itemId=/content/journal/micro/10.1099/mic.0.053710-0&mimeType=html&fmt=ahah

References

  1. Anderson E. S., Paulley J. T., Gaines J. M., Valderas M. W., Martin D. W., Menscher E., Brown T. D., Burns C. S., Roop R. M. II. ( 2009;). The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun77:3466–3474 [CrossRef][PubMed]
    [Google Scholar]
  2. Anjem A., Varghese S., Imlay J. A.. ( 2009;). Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol72:844–858 [CrossRef][PubMed]
    [Google Scholar]
  3. Arirachakaran P., Benjavongkulchai E., Luengpailin S., Ajdić D., Banas J. A.. ( 2007;). Manganese affects Streptococcus mutans virulence gene expression. Caries Res41:503–511 [CrossRef][PubMed]
    [Google Scholar]
  4. Aschner J. L., Aschner M.. ( 2005;). Nutritional aspects of manganese homeostasis. Mol Aspects Med26:353–362 [CrossRef][PubMed]
    [Google Scholar]
  5. Aschner M., Gannon M.. ( 1994;). Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull33:345–349 [CrossRef][PubMed]
    [Google Scholar]
  6. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1987;). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  7. Bagg A., Neilands J. B.. ( 1987;). Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry26:5471–5477 [CrossRef][PubMed]
    [Google Scholar]
  8. Bearden S. W., Perry R. D.. ( 1999;). The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol32:403–414 [CrossRef][PubMed]
    [Google Scholar]
  9. Bearden S. W., Fetherston J. D., Perry R. D.. ( 1997;). Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun65:1659–1668[PubMed]
    [Google Scholar]
  10. Bearden S. W., Staggs T. M., Perry R. D.. ( 1998;). An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol180:1135–1147[PubMed]
    [Google Scholar]
  11. Beesley E. D., Brubaker R. R., Janssen W. A., Surgalla M. J.. ( 1967;). Pesticins. 3. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol94:19–26[PubMed]
    [Google Scholar]
  12. Berntsson R. P.-A., Smits S. H. J., Schmitt L., Slotboom D.-J., Poolman B.. ( 2010;). A structural classification of substrate-binding proteins. FEBS Lett584:2606–2617 [CrossRef][PubMed]
    [Google Scholar]
  13. Berry A. M., Paton J. C.. ( 1996;). Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun64:5255–5262[PubMed]
    [Google Scholar]
  14. Birnboim H. C., Doly J.. ( 1979;). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523 [CrossRef][PubMed]
    [Google Scholar]
  15. Boyer E., Bergevin I., Malo D., Gros P., Cellier M. F. M.. ( 2002;). Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun70:6032–6042 [CrossRef][PubMed]
    [Google Scholar]
  16. Brubaker R. R.. ( 1969;). Mutation rate to nonpigmentation in Pasteurella pestis. J Bacteriol98:1404–1406[PubMed]
    [Google Scholar]
  17. Cao J., Woodhall M. R., Alvarez J., Cartron M. L., Andrews S. C.. ( 2007;). EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157 : H7. Mol Microbiol65:857–875 [CrossRef][PubMed]
    [Google Scholar]
  18. Champion O. L., Karlyshev A., Cooper I. A. M., Ford D. C., Wren B. W., Duffield M., Oyston P. C. F., Titball R. W.. ( 2011;). Yersinia pseudotuberculosis mntH functions in intracellular manganese accumulation, which is essential for virulence and survival in cells expressing functional Nramp1. Microbiology157:1115–1122 [CrossRef][PubMed]
    [Google Scholar]
  19. Claverys J. P.. ( 2001;). A new family of high-affinity ABC manganese and zinc permeases. Res Microbiol152:231–243 [CrossRef][PubMed]
    [Google Scholar]
  20. Corbin B. D., Seeley E. H., Raab A., Feldmann J., Miller M. R., Torres V. J., Anderson K. L., Dattilo B. M., Dunman P. M.. & other authors ( 2008;). Metal chelation and inhibition of bacterial growth in tissue abscesses. Science319:962–965 [CrossRef][PubMed]
    [Google Scholar]
  21. Critchfield J. W., Keen C. L.. ( 1992;). Manganese+2 exhibits dynamic binding to multiple ligands in human plasma. Metabolism41:1087–1092 [CrossRef][PubMed]
    [Google Scholar]
  22. Dashper S. G., Butler C. A., Lissel J. P., Paolini R. A., Hoffmann B., Veith P. D., O’Brien-Simpson N. M., Snelgrove S. L., Tsiros J. T., Reynolds E. C.. ( 2005;). A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem280:28095–28102 [CrossRef][PubMed]
    [Google Scholar]
  23. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  24. Davidsson L., Lönnerdal B., Sandström B., Kunz C., Keen C. L.. ( 1989;). Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. J Nutr119:1461–1464[PubMed]
    [Google Scholar]
  25. Deng W., Burland V., Plunkett G. III, Boutin A., Mayhew G. F., Liss P., Perna N. T., Rose D. J., Mau B.. & other authors ( 2002;). Genome sequence of Yersinia pestis KIM. J Bacteriol184:4601–4611 [CrossRef][PubMed]
    [Google Scholar]
  26. Desrosiers D. C., Bearden S. W., Mier I. Jr, Abney J., Paulley J. T., Fetherston J. D., Salazar J. C., Radolf J. D., Perry R. D.. ( 2010;). Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun78:5163–5177 [CrossRef][PubMed]
    [Google Scholar]
  27. Dintilhac A., Alloing G., Granadel C., Claverys J.-P.. ( 1997;). Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol25:727–739 [CrossRef][PubMed]
    [Google Scholar]
  28. Fetherston J. D., Lillard J. W. Jr, Perry R. D.. ( 1995;). Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol177:1824–1833[PubMed]
    [Google Scholar]
  29. Fetherston J. D., Kirillina O., Bobrov A. G., Paulley J. T., Perry R. D.. ( 2010;). The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun78:2045–2052 [CrossRef][PubMed]
    [Google Scholar]
  30. Fields K. A., Nilles M. L., Cowan C., Straley S. C.. ( 1999;). Virulence role of V antigen of Yersinia pestis at the bacterial surface. Infect Immun67:5395–5408[PubMed]
    [Google Scholar]
  31. Forman S., Nagiec M. J., Abney J., Perry R. D., Fetherston J. D.. ( 2007;). Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. Microbiology153:2332–2341 [CrossRef][PubMed]
    [Google Scholar]
  32. Fraústo da Silva J. J. R., Williams R. J. P.. ( 2001;). The Biological Chemistry of the Elements: the Inorganic Chemistry of Life, 2nd edn. New York: Oxford University Press;
    [Google Scholar]
  33. Gong S., Bearden S. W., Geoffroy V. A., Fetherston J. D., Perry R. D.. ( 2001;). Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun69:2829–2837 [CrossRef][PubMed]
    [Google Scholar]
  34. Gray R. D., Duncan A., Noble D., Imrie M., O’Reilly D. S. J., Innes J. A., Porteous D. J., Greening A. P., Boyd A. C.. ( 2010;). Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest137:635–641 [CrossRef][PubMed]
    [Google Scholar]
  35. Große C., Scherer J., Koch D., Otto M., Taudte N., Grass G.. ( 2006;). A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol62:120–131 [CrossRef][PubMed]
    [Google Scholar]
  36. Guedon E., Helmann J. D.. ( 2003;). Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol48:495–506 [CrossRef][PubMed]
    [Google Scholar]
  37. Hantke K.. ( 1987;). Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: fur not only affects iron metabolism. Mol Gen Genet210:135–139 [CrossRef][PubMed]
    [Google Scholar]
  38. Hazlett K. R. O., Rusnak F., Kehres D. G., Bearden S. W., La Vake C. J., La Vake M. E., Maguire M. E., Perry R. D., Radolf J. D.. ( 2003;). The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J Biol Chem278:20687–20694 [CrossRef][PubMed]
    [Google Scholar]
  39. He J., Miyazaki H., Anaya C., Yu F., Yeudall W. A., Lewis J. P.. ( 2006;). Role of Porphyromonas gingivalis FeoB2 in metal uptake and oxidative stress protection. Infect Immun74:4214–4223 [CrossRef][PubMed]
    [Google Scholar]
  40. Higuchi K., Smith J. L.. ( 1961;). Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol81:605–608[PubMed]
    [Google Scholar]
  41. Ikeda J. S., Janakiraman A., Kehres D. G., Maguire M. E., Slauch J. M.. ( 2005;). Transcriptional regulation of sitABCD of Salmonella enterica serovar Typhimurium by MntR and Fur. J Bacteriol187:912–922 [CrossRef][PubMed]
    [Google Scholar]
  42. Inglesby T. V., Dennis D. T., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., Fine A. D., Friedlander A. M., Hauer J.. & other authors ( 2000;). Plague as a biological weapon: medical and public health management. JAMA283:2281–2290 [CrossRef][PubMed]
    [Google Scholar]
  43. Jakubovics N. S., Jenkinson H. F.. ( 2001;). Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology147:1709–1718[PubMed]
    [Google Scholar]
  44. Janakiraman A., Slauch J. M.. ( 2000;). The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol35:1146–1155 [CrossRef][PubMed]
    [Google Scholar]
  45. Janulczyk R., Pallon J., Björck L.. ( 1999;). Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol34:596–606 [CrossRef][PubMed]
    [Google Scholar]
  46. Janulczyk R., Ricci S., Björck L.. ( 2003;). MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun71:2656–2664 [CrossRef][PubMed]
    [Google Scholar]
  47. Kehl-Fie T. E., Skaar E. P.. ( 2010;). Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol14:218–224 [CrossRef][PubMed]
    [Google Scholar]
  48. Kehres D. G., Janakiraman A., Slauch J. M., Maguire M. E.. ( 2002a;). SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium. J Bacteriol184:3159–3166 [CrossRef][PubMed]
    [Google Scholar]
  49. Kehres D. G., Janakiraman A., Slauch J. M., Maguire M. E.. ( 2002b;). Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+.. J Bacteriol184:3151–3158 [CrossRef][PubMed]
    [Google Scholar]
  50. Kirillina O., Bobrov A. G., Fetherston J. D., Perry R. D.. ( 2006;). Hierarchy of iron uptake systems: Yfu and Yiu are functional in Yersinia pestis. Infect Immun74:6171–6178 [CrossRef][PubMed]
    [Google Scholar]
  51. Kliegman J. I., Griner S. L., Helmann J. D., Brennan R. G., Glasfeld A.. ( 2006;). Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis. Biochemistry45:3493–3505 [CrossRef][PubMed]
    [Google Scholar]
  52. Koch D., Chan A. C. K., Murphy M. E. P., Lilie H., Grass G., Nies D. H.. ( 2011;). Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11. J Biol Chem286:25317–25330 [CrossRef][PubMed]
    [Google Scholar]
  53. Lathem W. W., Price P. A., Miller V. L., Goldman W. E.. ( 2007;). A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science315:509–513 [CrossRef][PubMed]
    [Google Scholar]
  54. Lim K. H. L., Jones C. E., vanden Hoven R. N., Edwards J. L., Falsetta M. L., Apicella M. A., Jennings M. P., McEwan A. G.. ( 2008;). Metal binding specificity of the MntABC permease of Neisseria gonorrhoeae and its influence on bacterial growth and interaction with cervical epithelial cells. Infect Immun76:3569–3576 [CrossRef][PubMed]
    [Google Scholar]
  55. Lönnerdal B., Keen C. L., Hurley L. S.. ( 1985;). Manganese binding proteins in human and cow’s milk. Am J Clin Nutr41:550–559[PubMed]
    [Google Scholar]
  56. Macara I. G., Hoy T. G., Harrison P. M.. ( 1973;). The formation of ferritin from apoferritin. Inhibition and metal ion-binding studies. Biochem J135:785–789[PubMed]
    [Google Scholar]
  57. Marra A., Lawson S., Asundi J. S., Brigham D., Hromockyj A. E.. ( 2002;). In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology148:1483–1491[PubMed]
    [Google Scholar]
  58. McDevitt C. A., Ogunniyi A. D., Valkov E., Lawrence M. C., Kobe B., McEwan A. G., Paton J. C.. ( 2011;). A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog7:e1002357 [CrossRef][PubMed]
    [Google Scholar]
  59. Miller J. H.. ( 1992;). A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  60. Moutafchiev D., Sirakov L., Bontchev P.. ( 1998;). The competition between transferrins labeled with 59Fe, 65Zn, and 54Mn for the binding sites on lactating mouse mammary gland cells. Biol Trace Elem Res61:181–191 [CrossRef][PubMed]
    [Google Scholar]
  61. Ouyang Z., He M., Oman T., Yang X. F., Norgard M. V.. ( 2009;). A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A106:3449–3454 [CrossRef][PubMed]
    [Google Scholar]
  62. Paik S., Brown A., Munro C. L., Cornelissen C. N., Kitten T.. ( 2003;). The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol185:5967–5975 [CrossRef][PubMed]
    [Google Scholar]
  63. Papavasiliou P. S., Cotzias G. C.. ( 1961;). Neutron activation analysis: the determination of manganese. J Biol Chem236:2365–2369[PubMed]
    [Google Scholar]
  64. Papp-Wallace K. M., Maguire M. E.. ( 2006;). Manganese transport and the role of manganese in virulence. Annu Rev Microbiol60:187–209 [CrossRef][PubMed]
    [Google Scholar]
  65. Patzer S. I., Hantke K.. ( 2001;). Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli. J Bacteriol183:4806–4813 [CrossRef][PubMed]
    [Google Scholar]
  66. Perry R. D., Fetherston J. D.. ( 1997;). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev10:35–66[PubMed]
    [Google Scholar]
  67. Perry R. D., Pendrak M. L., Schuetze P.. ( 1990;). Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol172:5929–5937[PubMed]
    [Google Scholar]
  68. Perry R. D., Abney J., Mier I. Jr, Lee Y., Bearden S. W., Fetherston J. D.. ( 2003;). Regulation of the Yersinia pestis Yfe and Ybt iron transport systems. Adv Exp Med Biol529:275–283 [CrossRef][PubMed]
    [Google Scholar]
  69. Perry R. D., Mier I. Jr, Fetherston J. D.. ( 2007;). Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth. Biometals20:699–703 [CrossRef][PubMed]
    [Google Scholar]
  70. Perry R. D., Bobrov A. G., Kirillina O., Fetherston J. D.. ( 2012;). Yersinia pestis transition metal divalent cation transporters. Adv Exp Med Biol
    [Google Scholar]
  71. Privalle C. T., Fridovich I.. ( 1993;). Iron specificity of the Fur-dependent regulation of the biosynthesis of the manganese-containing superoxide dismutase in Escherichia coli. J Biol Chem268:5178–5181[PubMed]
    [Google Scholar]
  72. Rajasekaran M. B., Nilapwar S., Andrews S. C., Watson K. A.. ( 2010;). EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport. Biometals23:1–17 [CrossRef][PubMed]
    [Google Scholar]
  73. Reed L. J., Muench H.. ( 1938;). A simple method for estimating fifty percent endpoints. Am J Hyg27:493–497
    [Google Scholar]
  74. Rehnberg G. L., Hein J. F., Carter S. D., Laskey J. W.. ( 1980;). Chronic manganese oxide administration to preweanling rats: manganese accumulation and distribution. J Toxicol Environ Health6:217–226 [CrossRef][PubMed]
    [Google Scholar]
  75. Rhodes E. R., Tomaras A. P., McGillivary G., Connerly P. L., Actis L. A.. ( 2005;). Genetic and functional analyses of the Actinobacillus actinomycetemcomitans AfeABCD siderophore-independent iron acquisition system. Infect Immun73:3758–3763 [CrossRef][PubMed]
    [Google Scholar]
  76. Rogers H. J.. ( 1973;). Iron-binding catechols and virulence in Escherichia coli. Infect Immun7:445–456[PubMed]
    [Google Scholar]
  77. Runyen-Janecky L. J., Reeves S. A., Gonzales E. G., Payne S. M.. ( 2003;). Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun71:1919–1928 [CrossRef][PubMed]
    [Google Scholar]
  78. Runyen-Janecky L., Dazenski E., Hawkins S., Warner L.. ( 2006;). Role and regulation of the Shigella flexneri Sit and MntH systems. Infect Immun74:4666–4672 [CrossRef][PubMed]
    [Google Scholar]
  79. Sabri M., Léveillé S., Dozois C. M.. ( 2006;). A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology152:745–758 [CrossRef][PubMed]
    [Google Scholar]
  80. Sabri M., Caza M., Proulx J., Lymberopoulos M. H., Brée A., Moulin-Schouleur M., Curtiss R. III, Dozois C. M.. ( 2008;). Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain χ7122. Infect Immun76:601–611 [CrossRef][PubMed]
    [Google Scholar]
  81. Schmitt M. P.. ( 2002;). Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn2+-dependent mechanism. J Bacteriol184:6882–6892 [CrossRef][PubMed]
    [Google Scholar]
  82. Smith A. J., Ward P. N., Field T. R., Jones C. L., Lincoln R. A., Leigh J. A.. ( 2003;). MtuA, a lipoprotein receptor antigen from Streptococcus uberis, is responsible for acquisition of manganese during growth in milk and is essential for infection of the lactating bovine mammary gland. Infect Immun71:4842–4849 [CrossRef][PubMed]
    [Google Scholar]
  83. Staggs T. M., Perry R. D.. ( 1991;). Identification and cloning of a fur regulatory gene in Yersinia pestis. J Bacteriol173:417–425[PubMed]
    [Google Scholar]
  84. Surgalla M. J., Beesley E. D.. ( 1969;). Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol18:834–837[PubMed]
    [Google Scholar]
  85. Tottey S., Waldron K. J., Firbank S. J., Reale B., Bessant C., Sato K., Cheek T. R., Gray J., Banfield M. J.. & other authors ( 2008;). Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature455:1138–1142 [CrossRef][PubMed]
    [Google Scholar]
  86. Zaharik M. L., Finlay B. B.. ( 2004;). Mn2+ and bacterial pathogenesis. Front Biosci9:1035–1042 [CrossRef][PubMed]
    [Google Scholar]
  87. Zaharik M. L., Cullen V. L., Fung A. M., Libby S. J., Kujat Choy S. L., Coburn B., Kehres D. G., Maguire M. E., Fang F. C., Finlay B. B.. ( 2004;). The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect Immun72:5522–5525 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053710-0
Loading
/content/journal/micro/10.1099/mic.0.053710-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error