1887

Abstract

Bacterial histone-like proteins are important for nucleoid structure, cell growth, DNA replication, recombination and gene regulation. In this study, we focused on the role of DR0199 (the EbfC orthologue), a newly identified member of the nucleoid-associated protein family in The survival fraction of DR0199-null mutant decreased by tenfold after treatment with 50 mM HO, nearly sixfold at a 10 kGy dose of gamma ray and nearly eightfold at a UV exposure of 1000 J m compared with wild-type cells. The results of fluorescence labelling assays indicated that DR0199 protein localized in the nucleoid area of cells. Electrophoretic mobility shift assays demonstrated that DR0199 is a DNA-binding protein. Furthermore, DNA protection assays suggested that DR0199 shields DNA from hydroxyl radical- and DNase I-mediated cleavage. The supercoiling of relaxed plasmid DNA in the presence of topoisomerase I revealed that DR0199 constrains DNA supercoils . Collectively, these findings suggest that DR0199 is a protein with DNA-protective properties and histone-like features that are involved in protecting DNA from damage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053702-0
2012-04-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/936.html?itemId=/content/journal/micro/10.1099/mic.0.053702-0&mimeType=html&fmt=ahah

References

  1. Arora K., Whiteford D. C., Lau-Bonilla D., Davitt C. M., Dahl J. L.. ( 2008;). Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis. J Bacteriol190:4291–4300 [CrossRef][PubMed]
    [Google Scholar]
  2. Babb K., Bykowski T., Riley S. P., Miller M. C., Demoll E., Stevenson B.. ( 2006;). Borrelia burgdorferi EbfC, a novel, chromosomally encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete’s resident cp32 prophages. J Bacteriol188:4331–4339 [CrossRef][PubMed]
    [Google Scholar]
  3. Barth M., Marschall C., Muffler A., Fischer D., Hengge-Aronis R.. ( 1995;). Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of σS and many σS-dependent genes in Escherichia coli. J Bacteriol177:3455–3464[PubMed]
    [Google Scholar]
  4. Battista J. R.. ( 1997;). Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol51:203–224 [CrossRef][PubMed]
    [Google Scholar]
  5. Blasius M., Hübscher U., Sommer S.. ( 2008;). Deinococcus radiodurans: what belongs to the survival kit?. Crit Rev Biochem Mol Biol43:221–238 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen H., Xu G., Zhao Y., Tian B., Lu H., Yu X., Xu Z., Ying N., Hu S., Hua Y.. ( 2008;). A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS ONE3:e1602 [CrossRef][PubMed]
    [Google Scholar]
  7. Colangeli R., Helb D., Vilchèze C., Hazbón M. H., Lee C. G., Safi H., Sayers B., Sardone I., Jones M. B.. & other authors ( 2007;). Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog3:e87 [CrossRef][PubMed]
    [Google Scholar]
  8. Colangeli R., Haq A., Arcus V. L., Summers E., Magliozzo R. S., McBride A., Mitra A. K., Radjainia M., Khajo A.. & other authors ( 2009;). The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A106:4414–4418 [CrossRef][PubMed]
    [Google Scholar]
  9. Cooley A. E., Riley S. P., Kral K., Miller M. C., DeMoll E., Fried M. G., Stevenson B.. ( 2009;). DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family. BMC Microbiol9:137 [CrossRef][PubMed]
    [Google Scholar]
  10. Cox M. M., Battista J. R.. ( 2005;). Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol3:882–892 [CrossRef][PubMed]
    [Google Scholar]
  11. Dillon S. C., Dorman C. J.. ( 2010;). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol8:185–195 [CrossRef][PubMed]
    [Google Scholar]
  12. Furukawa A., Hiraku Y., Oikawa S., Luxford C., Davies M. J., Kawanishi S.. ( 2005;). Guanine-specific DNA damage induced by gamma-irradiated histone. Biochem J388:813–818 [CrossRef][PubMed]
    [Google Scholar]
  13. Grayling R. A., Bailey K. A., Reeve J. N.. ( 1997;). DNA binding and nuclease protection by the HMf histones from the hyperthermophilic archaeon Methanothermus fervidus. Extremophiles1:79–88 [CrossRef][PubMed]
    [Google Scholar]
  14. GuanJun G., Lu F., HuiMing L., YueJin H.. ( 2008;). Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment. Chin Sci Bull53:1675–1681 [CrossRef]
    [Google Scholar]
  15. Jain S. S., Tullius T. D.. ( 2008;). Footprinting protein-DNA complexes using the hydroxyl radical. Nat Protoc3:1092–1100 [CrossRef][PubMed]
    [Google Scholar]
  16. Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., Minsky A.. ( 2003;). Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?. Science299:254–256 [CrossRef][PubMed]
    [Google Scholar]
  17. Lim K., Tempczyk A., Parsons J. F., Bonander N., Toedt J., Kelman Z., Howard A., Eisenstein E., Herzberg O.. ( 2003;). Crystal structure of YbaB from Haemophilus influenzae (HI0442), a protein of unknown function coexpressed with the recombinational DNA repair protein RecR. Proteins50:375–379 [CrossRef][PubMed]
    [Google Scholar]
  18. Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T.. ( 2006;). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol156:262–272 [CrossRef][PubMed]
    [Google Scholar]
  19. Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., Daly M. J.. ( 2001;). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev65:44–79 [CrossRef][PubMed]
    [Google Scholar]
  20. Markillie L. M., Varnum S. M., Hradecky P., Wong K. K.. ( 1999;). Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol181:666–669[PubMed]
    [Google Scholar]
  21. Meima R., Rothfuss H. M., Gewin L., Lidstrom M. E.. ( 2001;). Promoter cloning in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol183:3169–3175 [CrossRef][PubMed]
    [Google Scholar]
  22. Minton K. W.. ( 1994;). DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol13:9–15 [CrossRef][PubMed]
    [Google Scholar]
  23. Nguyen H. H., de la Tour C. B., Toueille M., Vannier F., Sommer S., Servant P.. ( 2009;). The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction. Mol Microbiol73:240–252 [CrossRef][PubMed]
    [Google Scholar]
  24. Riley S. P., Bykowski T., Cooley A. E., Burns L. H., Babb K., Brissette C. A., Bowman A., Rotondi M., Miller M. C.. & other authors ( 2009;). Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins. Nucleic Acids Res37:1973–1983 [CrossRef][PubMed]
    [Google Scholar]
  25. Rimsky S.. ( 2004;). Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol7:109–114 [CrossRef][PubMed]
    [Google Scholar]
  26. Slade D., Radman M.. ( 2011;). Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev75:133–191 [CrossRef][PubMed]
    [Google Scholar]
  27. Stavans J., Oppenheim A.. ( 2006;). DNA-protein interactions and bacterial chromosome architecture. Phys Biol3:R1–R10 [CrossRef][PubMed]
    [Google Scholar]
  28. Tian B., Wang H., Ma X., Hu Y., Sun Z., Shen S., Wang F., Hua Y.. ( 2010;). Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis. Mol Biosyst6:2068–2077 [CrossRef][PubMed]
    [Google Scholar]
  29. Travers A., Muskhelishvili G.. ( 2005;). Bacterial chromatin. Curr Opin Genet Dev15:507–514 [CrossRef][PubMed]
    [Google Scholar]
  30. Wang L., Xu G., Chen H., Zhao Y., Xu N., Tian B., Hua Y.. ( 2008;). DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. Mol Microbiol67:1211–1222 [CrossRef][PubMed]
    [Google Scholar]
  31. Xu G., Wang L., Chen H., Lu H., Ying N., Tian B., Hua Y.. ( 2008;). RecO is essential for DNA damage repair in Deinococcus radiodurans. J Bacteriol190:2624–2628 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053702-0
Loading
/content/journal/micro/10.1099/mic.0.053702-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error