1887

Abstract

spp. are a rich source of secondary metabolites (SMs). The recent publication of the genome sequences of three spp. has revealed a vast repertoire of genes putatively involved in the biosynthesis of SMs, such as non-ribosomal peptides, polyketides, terpenoids and pyrones. Interestingly, the genomes of the mycoparasitic species and are enriched in secondary metabolism-related genes compared with the biomass-degrading : 18 and 18 polyketide synthases compared with 11; 28 and 16 non-ribosomal peptide synthetases compared with 10, respectively. All three species produce a special class of non-ribosomally synthesized peptides known as peptaibols, containing non-proteinogenic amino acids (particularly α-aminoisobutyric acid). In common with other filamentous ascomycetes, spp. may require siderophores (also produced by non-ribosomal peptide synthetases) to grow in iron-poor conditions and to compete with their hosts for available iron. Two generalizations can be made about fungal SM genes: they are often found in clusters, and many are not expressed under standard laboratory conditions. This has made it difficult to identify the compounds. , in particular, interacts with other microbes in the soil and with plant roots in the rhizosphere. A detailed metabolomic–genomic study would eventually unravel the roles of many of these SMs in natural ecosystems. Novel genetic tools developed recently, combined with biological understanding of the function of SMs as toxins or signals, should lead to ‘awakening’ of these ‘silent’ clusters. Knowledge of the SM repertoire should precede application of strains for biocontrol: some metabolites could be toxic to plants and their consumers, and thus should be avoided. Others could be beneficial, antagonizing pathogens or inducing resistance in crop plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053629-0
2012-01-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/35.html?itemId=/content/journal/micro/10.1099/mic.0.053629-0&mimeType=html&fmt=ahah

References

  1. Baker S. E., Perrone G., Richardson N. M., Gallo A., Kubicek C. P.. ( 2012;). Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma . Microbiology158:147–154[CrossRef]
    [Google Scholar]
  2. Bayram O., Krappmann S., Ni M., Bok J. W., Helmstaedt K., Valerius O., Braus-Stromeyer S., Kwon N. J., Keller N. P.. & other authors ( 2008;). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science320:1504–1506 [CrossRef][PubMed]
    [Google Scholar]
  3. Böhnert H. U., Fudal I., Dioh W., Tharreau D., Notteghem J. L., Lebrun M. H.. ( 2004;). A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell16:2499–2513 [CrossRef][PubMed]
    [Google Scholar]
  4. Bok J. W., Chiang Y.-M., Szewczyk E., Reyes-Dominguez Y., Davidson A. D., Sanchez J. F., Lo H.-C., Watanabe K., Strauss J.. & other authors ( 2009;). Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol5:462–464 [CrossRef][PubMed]
    [Google Scholar]
  5. Bonfante P., Requena N.. ( 2011;). Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol14:451–457 [CrossRef][PubMed]
    [Google Scholar]
  6. Bonnarme P., Djian A., Latrasse A., Féron G., Giniès C., Durand A., Le Quéré J.-L.. ( 1997;). Production of 6-pentyl-α-pyrone by Trichoderma sp. from vegetable oils. J Biotechnol56:143–150 [CrossRef]
    [Google Scholar]
  7. Brakhage A. A., Schroeckh V.. ( 2011;). Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol48:15–22 [CrossRef][PubMed]
    [Google Scholar]
  8. Brian P. W.. ( 1944;). Production of gliotoxin by Trichoderma viride . Nature154:667–668 [CrossRef]
    [Google Scholar]
  9. Brian P. W., Hemming H. G.. ( 1945;). Gliotoxin, a fungistatic metabolic product of Trichoderma viride . Ann Appl Biol32:214–220 [CrossRef][PubMed]
    [Google Scholar]
  10. Bucher M., Wegmüller S., Drissner D.. ( 2009;). Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol12:500–507 [CrossRef][PubMed]
    [Google Scholar]
  11. Bushley K. E., Turgeon B. G.. ( 2010;). Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol10:26 [CrossRef][PubMed]
    [Google Scholar]
  12. Calvo A. M.. ( 2008;). The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol45:1053–1061 [CrossRef][PubMed]
    [Google Scholar]
  13. Chiang Y. M., Chang S. L., Oakley B. R., Wang C. C.. ( 2011;). Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol15:137–143 [CrossRef][PubMed]
    [Google Scholar]
  14. Cichewicz R. H.. ( 2010;). Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep27:11–22 [CrossRef][PubMed]
    [Google Scholar]
  15. Collemare J., Pianfetti M., Houlle A. E., Morin D., Camborde L., Gagey M. J., Barbisan C., Fudal I., Lebrun M. H., Böhnert H. U.. ( 2008;). Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol179:196–208 [CrossRef][PubMed]
    [Google Scholar]
  16. Cooney J. M., Lauren D. R., di Menna M. E.. ( 2001;). Impact of competitive fungi on trichothecene production by Fusarium graminearum . J Agric Food Chem49:522–526 [CrossRef][PubMed]
    [Google Scholar]
  17. Dagenais T. R., Keller N. P.. ( 2009;). Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev22:447–465 [CrossRef][PubMed]
    [Google Scholar]
  18. Davis C., Carberry S., Schrettl M., Singh I., Stephens J. C., Barry S. M., Kavanagh K., Challis G. L., Brougham D., Doyle S.. ( 2011;). The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus . Chem Biol18:542–552 [CrossRef][PubMed]
    [Google Scholar]
  19. Degenkolb T., von Döhren H., Nielsen K. F., Samuels G. J., Brückner H.. ( 2008;). Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea . Chem Biodivers5:671–680 [CrossRef][PubMed]
    [Google Scholar]
  20. Druzhinina I. S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B. A., Kenerley C. M., Monte E., Mukherjee P. K., Zeilinger S., Grigoriev I. V., Kubicek C. P.. ( 2011;). Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol9:749–759 [CrossRef][PubMed]
    [Google Scholar]
  21. Engelberth J., Koch T., Schüler G., Bachmann N., Rechtenbach J., Boland W.. ( 2001;). Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol125:369–377 [CrossRef][PubMed]
    [Google Scholar]
  22. Evans B. S., Robinson S. J., Kelleher N. L.. ( 2011;). Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo . Fungal Genet Biol48:49–61 [CrossRef][PubMed]
    [Google Scholar]
  23. Giles S. S., Soukup A. A., Lauer C., Shaaban M., Lin A., Oakley B. R., Wang C. C., Keller N. P.. ( 2011;). Cryptic Aspergillus nidulans antimicrobials. Appl Environ Microbiol77:3669–3675 [CrossRef][PubMed]
    [Google Scholar]
  24. Haas H., Eisendle M., Turgeon B. G.. ( 2008;). Siderophores in fungal physiology and virulence. Annu Rev Phytopathol46:149–187 [CrossRef][PubMed]
    [Google Scholar]
  25. Hoffmeister D., Keller N. P.. ( 2007;). Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep24:393–416 [CrossRef][PubMed]
    [Google Scholar]
  26. Howell C. R.. ( 2006;). Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology96:178–180 [CrossRef][PubMed]
    [Google Scholar]
  27. Howell C. R., Stipanovic R. D.. ( 1983;). Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum . Can J Microbiol29:321–324 [CrossRef]
    [Google Scholar]
  28. Howell C. R., Stipanovic R. D.. ( 1995;). Mechanisms in the biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens: antibiosis. Phytopathology85:469–472 [CrossRef]
    [Google Scholar]
  29. Howell C. R., Stipanovic R., Lumsden R.. ( 1993;). Antibiotic production by strains of Gliocladium virens and its relation to biocontrol of cotton seedling diseases. Biocontrol Sci Technol3:435–441 [CrossRef]
    [Google Scholar]
  30. Jalal M. A., Love S. K., van der Helm D.. ( 1986;). Siderophore mediated iron(III) uptake in Gliocladium virens. 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes. J Inorg Biochem28:417–430 [CrossRef][PubMed]
    [Google Scholar]
  31. Jones R. W., Hancock J. G.. ( 1987;). Conversion of viridin to viridiol by viridin-producing fungi. Can J Microbiol33:963–966 [CrossRef][PubMed]
    [Google Scholar]
  32. Keller N. P., Turner G., Bennett J. W.. ( 2005;). Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol3:937–947 [CrossRef][PubMed]
    [Google Scholar]
  33. Khosla C.. ( 2009;). Structures and mechanisms of polyketide synthases. J Org Chem74:6416–6420 [CrossRef][PubMed]
    [Google Scholar]
  34. Kimura M., Tokai T., Takahashi-Ando N., Ohsato S., Fujimura M.. ( 2007;). Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem71:2105–2123 [CrossRef][PubMed]
    [Google Scholar]
  35. Kiyota T., Hamada R., Sakamoto K., Iwashita K., Yamada O., Mikami S.. ( 2011;). Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. J Biosci Bioeng111:512–517 [CrossRef][PubMed]
    [Google Scholar]
  36. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A.. & other authors ( 2011;). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma . Genome Biol12:R40 [CrossRef][PubMed]
    [Google Scholar]
  37. Lee I., Oh J.-H., Shwab E. K., Dagenais T. R. T., Andes D., Keller N. P.. ( 2009;). HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol46:782–790 [CrossRef][PubMed]
    [Google Scholar]
  38. Leitgeb B., Szekeres A., Manczinger L., Vágvölgyi C., Kredics L.. ( 2007;). The history of alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers4:1027–1051 [CrossRef][PubMed]
    [Google Scholar]
  39. Liu Z., Faris J. D., Oliver R. P., Tan K. C., Solomon P. S., McDonald M. C., McDonald B. A., Nunez A., Lu S.. & other authors ( 2009;). SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog5:e1000581 [CrossRef][PubMed]
    [Google Scholar]
  40. Lorito M., Peterbauer C., Hayes C. K., Harman G. E.. ( 1994;). Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology140:623–629 [CrossRef][PubMed]
    [Google Scholar]
  41. Lumsden R. D., Locke J. C., Adkins S. T., Walter J. F., Ridout C. J.. ( 1992;). Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology82:230–235 [CrossRef]
    [Google Scholar]
  42. Maischak H., Zimmermann M. R., Felle H. H., Boland W., Mithöfer A.. ( 2010;). Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav5:988–990 [CrossRef][PubMed]
    [Google Scholar]
  43. Mukherjee P. K., Kenerley C. M.. ( 2010;). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol76:2345–2352 [CrossRef][PubMed]
    [Google Scholar]
  44. Mukherjee M., Horwitz B. A., Sherkhane P. D., Hadar R., Mukherjee P. K.. ( 2006;). A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet50:193–202 [CrossRef][PubMed]
    [Google Scholar]
  45. Mukherjee P. K., Wiest A., Ruiz N., Keightley A., Moran-Diez M. E., McCluskey K., Pouchus Y. F., Kenerley C. M.. ( 2011;). Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens . J Biol Chem286:4544–4554 [CrossRef][PubMed]
    [Google Scholar]
  46. Mukherjee P. K., Buensanteai N., Moran-Diez M. E., Druzhinina I. S., Kenerley C. M.. ( 2012;). Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in induced systemic resistance response in maize. Microbiology158:155–165[CrossRef]
    [Google Scholar]
  47. O’Brien J., Wright G. D.. ( 2011;). An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol22:552–558 [CrossRef][PubMed]
    [Google Scholar]
  48. Oide S., Krasnoff S. B., Gibson D. M., Turgeon B. G.. ( 2007;). Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae . Eukaryot Cell6:1339–1353 [CrossRef][PubMed]
    [Google Scholar]
  49. Osbourn A.. ( 2010;). Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet26:449–457 [CrossRef][PubMed]
    [Google Scholar]
  50. Park Y.-H., Stack J. P., Kenerley C. M.. ( 1991;). Production of gliotoxin by Gliocladium virens as a function of source and concentration of carbon and nitrogen. Mycol Res95:1242–1248 [CrossRef]
    [Google Scholar]
  51. Patron N. J., Waller R. F., Cozijnsen A. J., Straney D. C., Gardiner D. M., Nierman W. C., Howlett B. J.. ( 2007;). Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol7:174 [CrossRef][PubMed]
    [Google Scholar]
  52. Reino J. L., Guerrero R. F., Hernández-Galán R., Collado I. G.. ( 2008;). Secondary metabolites from species of the biocontrol agent Trichoderma . Phytochem Rev7:89–123 [CrossRef]
    [Google Scholar]
  53. Reithner B., Brunner K., Schuhmacher R., Peissl I., Seidl V., Krska R., Zeilinger S.. ( 2005;). The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol42:749–760 [CrossRef][PubMed]
    [Google Scholar]
  54. Reithner B., Schuhmacher R., Stoppacher N., Pucher M., Brunner K., Zeilinger S.. ( 2007;). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol44:1123–1133 [CrossRef][PubMed]
    [Google Scholar]
  55. Rippa S., Eid M., Formaggio F., Toniolo C., Béven L.. ( 2010;). Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana . ChemBioChem11:2042–2049 [CrossRef][PubMed]
    [Google Scholar]
  56. Rokas A.. ( 2009;). The effect of domestication on the fungal proteome. Trends Genet25:60–63 [CrossRef][PubMed]
    [Google Scholar]
  57. Rubio M. B., Hermosa R., Reino J. L., Collado I. G., Monte E.. ( 2009;). Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol46:17–27 [CrossRef][PubMed]
    [Google Scholar]
  58. Sametz-Baron L., Berrocal-Tito G., Amit R., Herrera-Estrella A., Horwitz B. A.. ( 1997;). Photoreactivation of UV-inactivated spores of Trichoderma harzianum . Photochem Photobiol65:849–854 [CrossRef]
    [Google Scholar]
  59. Schirmböck M., Lorito M., Wang Y. L., Hayes C. K., Arisan-Atac I., Scala F., Harman G. E., Kubicek C. P.. ( 1994;). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol60:4364–4370[PubMed]
    [Google Scholar]
  60. Schrettl M., Ibrahim-Granet O., Droin S., Huerre M., Latgé J. P., Haas H.. ( 2010;). The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes Infect12:1035–1041 [CrossRef][PubMed]
    [Google Scholar]
  61. Schroeckh V., Scherlach K., Nützmann H. W., Shelest E., Schmidt-Heck W., Schuemann J., Martin K., Hertweck C., Brakhage A. A.. ( 2009;). Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans . Proc Natl Acad Sci U S A106:14558–14563 [CrossRef][PubMed]
    [Google Scholar]
  62. Segarra G., Casanova E., Avilés M., Trillas I.. ( 2010;). Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol59:141–149 [CrossRef][PubMed]
    [Google Scholar]
  63. Sindhu A., Chintamanani S., Brandt A. S., Zanis M., Scofield S. R., Johal G. S.. ( 2008;). A guardian of grasses: specific origin and conservation of a unique disease-resistance gene in the grass lineage. Proc Natl Acad Sci U S A105:1762–1767 [CrossRef][PubMed]
    [Google Scholar]
  64. Sivasithamparam K., Ghisalberti E.. ( 1998;). Secondary metabolism in Trichoderma and Gliocladium . Trichoderma and Gliocladium Basic Biology, Taxonomy and Genetics139–191 Kubicek C., Harman G. E.. London: Taylor & Francis;
    [Google Scholar]
  65. Slot J. C., Rokas A.. ( 2011;). Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol21:134–139 [CrossRef][PubMed]
    [Google Scholar]
  66. Stack D., Neville C., Doyle S.. ( 2007;). Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology153:1297–1306 [CrossRef][PubMed]
    [Google Scholar]
  67. Stoppacher N., Kluger B., Zeilinger S., Krska R., Schuhmacher R.. ( 2010;). Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods81:187–193 [CrossRef][PubMed]
    [Google Scholar]
  68. Strieker M., Tanović A., Marahiel M. A.. ( 2010;). Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol20:234–240 [CrossRef][PubMed]
    [Google Scholar]
  69. Tijerino A., Cardoza R. E., Moraga J., Malmierca M. G., Vicente F., Aleu J., Collado I. G., Gutiérrez S., Monte E., Hermosa R.. ( 2011;). Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum . Fungal Genet Biol48:285–296 [CrossRef][PubMed]
    [Google Scholar]
  70. Turgeon B. G., Oide S., Bushley K.. ( 2008;). Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. Mycol Res112:200–206 [CrossRef][PubMed]
    [Google Scholar]
  71. Velázquez-Robledo R., Contreras-Cornejo H., Macías-Rodríguez L. I., Hernández-Morales A., Aguirre J., Casas-Flores S., López-Bucio J., Herrera-Estrella A.. ( 2011;). Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism, and induction of plant defense responses. Mol Plant Microbe Interact [CrossRef][PubMed]
    [Google Scholar]
  72. Vinale F., Sivasithamparam K., Ghisalberti E., Marra R., Woo S., Lorito M.. ( 2008;). Trichoderma–plant–pathogen interactions. Soil Biol Biochem40:1–10 [CrossRef]
    [Google Scholar]
  73. Viterbo A., Wiest A., Brotman Y., Chet I., Kenerley C.. ( 2007;). The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol8:737–746 [CrossRef][PubMed]
    [Google Scholar]
  74. von Döhren H.. ( 2009;). A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans . Fungal Genet Biol46:Suppl. 1S45–S52 [CrossRef][PubMed]
    [Google Scholar]
  75. Wallner A., Blatzer M., Schrettl M., Sarg B., Lindner H., Haas H.. ( 2009;). Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus . Appl Environ Microbiol75:4194–4196 [CrossRef][PubMed]
    [Google Scholar]
  76. Walton J. D.. ( 2000;). Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol30:167–171 [CrossRef][PubMed]
    [Google Scholar]
  77. Walton J. D.. ( 2006;). HC-toxin. Phytochemistry67:1406–1413 [CrossRef][PubMed]
    [Google Scholar]
  78. Weindling R.. ( 1934;). Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology34:1153
    [Google Scholar]
  79. Weindling R., Emerson O.. ( 1936;). The isolation of a toxic substance from the culture filtrate of Trichoderma . Phytopathology26:1068–1070
    [Google Scholar]
  80. Wiest A., Grzegorski D., Xu B. W., Goulard C., Rebuffat S., Ebbole D. J., Bodo B., Kenerley C.. ( 2002;). Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem277:20862–20868 [CrossRef][PubMed]
    [Google Scholar]
  81. Wilhite S. E., Straney D. C.. ( 1996;). Timing of gliotoxin biosynthesis in the fungal biological control agent Gliocladium virens (Trichoderma virens). Appl Microbiol Biotechnol45:513–518
    [Google Scholar]
  82. Wilhite S. E., Lumsden R. D., Straney D. C.. ( 1994;). Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology84:816–821 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053629-0
Loading
/content/journal/micro/10.1099/mic.0.053629-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error