1887

Abstract

is a non-pathogenic bacterium that is used in the food industry but is also used as a heterologous host to reveal protein functions of pathogenic bacteria. The adhesin PspC from is a choline-binding protein that is non-covalently anchored to the bacterial cell wall. To assess the exclusive impact of pneumococcal surface protein C (PspC) on the interplay with its host we generated recombinant producing a nisin-inducible and covalently anchored variant of PspC on the lactococcal cell surface. A translational fusion of the 5′-end of C3.4 with the 3′-end of (11.4) was designed to decorate the surface of with a chimeric PspC. The PspC3.4 part comprises the first 281 aa residues of PspC3.4, while the Hic sequence consists of the proline-rich and sortase-anchored domain. The results demonstrated that PspC is sufficient for adhesion and subsequent invasion of host epithelial cells expressing the human polymeric Ig receptor (hpIgR). Moreover, invasion via hpIgR was even more pronounced when the chimeric PspC was produced by lactococci compared with pneumococci. This study shows also for the first time that PspC plays no significant role during phagocytosis by macrophages. In contrast, recruitment of Factor H via the PspC chimer has a dramatic effect on phagocytosis of recombinant but not wild-type lactococci, as Factor H interacts specifically with the amino-terminal part of PspC and mediates the contact with phagocytes. Furthermore, expressing PspC increased intracellular calcium levels in pIgR-expressing epithelial cells, thus resembling the effect of pneumococci, which induced release of Ca from intracellular stores via the PspC–pIgR mechanism. In conclusion, expression of the chimeric PspC confers adhesive properties to and indicates the potential of as a suitable host to study the impact of individual bacterial factors on their capacity to interfere with the host and manipulate eukaryotic epithelial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053603-0
2012-03-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/771.html?itemId=/content/journal/micro/10.1099/mic.0.053603-0&mimeType=html&fmt=ahah

References

  1. Agarwal V., Hammerschmidt S. ( 2009). Cdc42 and the phosphatidylinositol 3-kinase-Akt pathway are essential for PspC-mediated internalization of pneumococci by respiratory epithelial cells. J Biol Chem 284:19427–19436 [View Article][PubMed]
    [Google Scholar]
  2. Agarwal V., Asmat T. M., Dierdorf N. I., Hauck C. R., Hammerschmidt S. ( 2010a). Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase. J Biol Chem 285:35615–35623 [View Article][PubMed]
    [Google Scholar]
  3. Agarwal V., Asmat T. M., Luo S., Jensch I., Zipfel P. F., Hammerschmidt S. ( 2010b). Complement regulator Factor H mediates a two-step uptake of Streptococcus pneumoniae by human cells. J Biol Chem 285:23486–23495 [View Article][PubMed]
    [Google Scholar]
  4. Asmat T. M., Agarwal V., Räth S., Hildebrandt J. P., Hammerschmidt S. ( 2011). Streptococcus pneumoniae infection of host epithelial cells via polymeric immunoglobulin receptor transiently induces calcium release from intracellular stores. J Biol Chem 286:17861–17869 [View Article][PubMed]
    [Google Scholar]
  5. Barocchi M. A., Ries J., Zogaj X., Hemsley C., Albiger B., Kanth A., Dahlberg S., Fernebro J., Moschioni M. & other authors ( 2006). A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A 103:2857–2862 [View Article][PubMed]
    [Google Scholar]
  6. Bergmann S., Hammerschmidt S. ( 2006). Versatility of pneumococcal surface proteins. Microbiology 152:295–303 [View Article][PubMed]
    [Google Scholar]
  7. Bergmann S., Lang A., Rohde M., Agarwal V., Rennemeier C., Grashoff C., Preissner K. T., Hammerschmidt S. ( 2009). Integrin-linked kinase is required for vitronectin-mediated internalization of Streptococcus pneumoniae by host cells. J Cell Sci 122:256–267 [View Article][PubMed]
    [Google Scholar]
  8. Birnbaumer L., Boulay G., Brown D., Jiang M., Dietrich A., Mikoshiba K., Zhu X., Qin N. ( 2000). Mechanism of capacitative Ca2+ entry (CCE): interaction between IP3 receptor and TRP links the internal calcium storage compartment to plasma membrane CCE channels. Recent Prog Horm Res 55:127–161[PubMed]
    [Google Scholar]
  9. Boulay G., Brown D. M., Qin N., Jiang M., Dietrich A., Zhu M. X., Chen Z., Birnbaumer M., Mikoshiba K., Birnbaumer L. ( 1999). Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci U S A 96:14955–14960 [View Article][PubMed]
    [Google Scholar]
  10. Bryan E. M., Bae T., Kleerebezem M., Dunny G. M. ( 2000). Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183–190 [View Article][PubMed]
    [Google Scholar]
  11. Cartwright K. ( 2002). Pneumococcal disease in western Europe: burden of disease, antibiotic resistance and management. Eur J Pediatr 161:188–195 [View Article][PubMed]
    [Google Scholar]
  12. Dave S., Pangburn M. K., Pruitt C., McDaniel L. S. ( 2004). Interaction of human factor H with PspC of Streptococcus pneumoniae . Indian J Med Res 119:Suppl.66–73[PubMed]
    [Google Scholar]
  13. de Lúcia Hernani M. L., Ferreira P. C., Ferreira D. M., Miyaji E. N., Ho P. L., Oliveira M. L. ( 2011). Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein C primes the immune system and decreases pneumococcal nasopharyngeal colonization in mice. FEMS Immunol Med Microbiol 62:263–272 [View Article][PubMed]
    [Google Scholar]
  14. de Ruyter P. G., Kuipers O. P., de Vos W. M. ( 1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667[PubMed]
    [Google Scholar]
  15. Elm C., Braathen R., Bergmann S., Frank R., Vaerman J. P., Kaetzel C. S., Chhatwal G. S., Johansen F. E., Hammerschmidt S. ( 2004). Ectodomains 3 and 4 of human polymeric immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 279:6296–6304 [View Article][PubMed]
    [Google Scholar]
  16. Enouf V., Langella P., Commissaire J., Cohen J., Corthier G. ( 2001). Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428 [View Article][PubMed]
    [Google Scholar]
  17. Gasson M. J. ( 1983). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9[PubMed]
    [Google Scholar]
  18. Grynkiewicz G., Poenie M., Tsien R. Y. ( 1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450[PubMed]
    [Google Scholar]
  19. Hammerschmidt S. ( 2006). Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol 9:12–20 [View Article][PubMed]
    [Google Scholar]
  20. Hammerschmidt S., Talay S. R., Brandtzaeg P., Chhatwal G. S. ( 1997). SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25:1113–1124 [View Article][PubMed]
    [Google Scholar]
  21. Hammerschmidt S., Tillig M. P., Wolff S., Vaerman J. P., Chhatwal G. S. ( 2000). Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36:726–736 [View Article][PubMed]
    [Google Scholar]
  22. Hammerschmidt S., Agarwal V., Kunert A., Haelbich S., Skerka C., Zipfel P. F. ( 2007). The host immune regulator factor H interacts via two contact sites with the PspC protein of Streptococcus pneumoniae and mediates adhesion to host epithelial cells. J Immunol 178:5848–5858[PubMed] [CrossRef]
    [Google Scholar]
  23. Härtel T., Klein M., Koedel U., Rohde M., Petruschka L., Hammerschmidt S. ( 2011). Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. Infect Immun 79:44–58 [View Article][PubMed]
    [Google Scholar]
  24. Iannelli F., Oggioni M. R., Pozzi G. ( 2002). Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae . Gene 284:63–71 [View Article][PubMed]
    [Google Scholar]
  25. Janulczyk R., Iannelli F., Sjoholm A. G., Pozzi G., Bjorck L. ( 2000). Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275:37257–37263 [View Article][PubMed]
    [Google Scholar]
  26. Jensch I., Gámez G., Rothe M., Ebert S., Fulde M., Somplatzki D., Bergmann S., Petruschka L., Rohde M. & other authors ( 2010). PavB is a surface-exposed adhesin of Streptococcus pneumoniae contributing to nasopharyngeal colonization and airways infections. Mol Microbiol 77:22–43 [View Article][PubMed]
    [Google Scholar]
  27. Kadioglu A., Weiser J. N., Paton J. C., Andrew P. W. ( 2008). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301 [CrossRef]
    [Google Scholar]
  28. Kunji E. R., Slotboom D. J., Poolman B. ( 2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108 [View Article][PubMed]
    [Google Scholar]
  29. Kunji E. R., Chan K. W., Slotboom D. J., Floyd S., O’Connor R., Monné M. ( 2005). Eukaryotic membrane protein overproduction in Lactococcus lactis . Curr Opin Biotechnol 16:546–551 [View Article][PubMed]
    [Google Scholar]
  30. Lu L., Lamm M. E., Li H., Corthesy B., Zhang J. R. ( 2003). The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J Biol Chem 278:48178–48187 [View Article][PubMed]
    [Google Scholar]
  31. Lu L., Ma Y., Zhang J. R. ( 2006). Streptococcus pneumoniae recruits complement factor H through the amino terminus of CbpA. J Biol Chem 281:15464–15474 [CrossRef]
    [Google Scholar]
  32. Luo R., Mann B., Lewis W. S., Rowe A., Heath R., Stewart M. L., Hamburger A. E., Sivakolundu S., Lacy E. R. & other authors ( 2005). Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae . EMBO J 24:34–43 [View Article][PubMed]
    [Google Scholar]
  33. Mierau I., Kleerebezem M. ( 2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis . Appl Microbiol Biotechnol 68:705–717 [View Article][PubMed]
    [Google Scholar]
  34. Mierau I., Olieman K., Mond J., Smid E. J. ( 2005). Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4:16 [View Article][PubMed]
    [Google Scholar]
  35. Mihlan M., Stippa S., Józsi M., Zipfel P. F. ( 2009). Monomeric CRP contributes to complement control in fluid phase and on cellular surfaces and increases phagocytosis by recruiting factor H. Cell Death Differ 16:1630–1640 [View Article][PubMed]
    [Google Scholar]
  36. Miyoshi A., Poquet I., Azevedo V., Commissaire J., Bermudez-Humaran L., Domakova E., Le Loir Y., Oliveira S. C., Gruss A., Langella P. ( 2002). Controlled production of stable heterologous proteins in Lactococcus lactis . Appl Environ Microbiol 68:3141–3146 [View Article][PubMed]
    [Google Scholar]
  37. Monné M., Chan K. W., Slotboom D. J., Kunji E. R. ( 2005). Functional expression of eukaryotic membrane proteins in Lactococcus lactis . Protein Sci 14:3048–3056 [View Article][PubMed]
    [Google Scholar]
  38. Morello E., Bermúdez-Humarán L. G., Llull D., Solé V., Miraglio N., Langella P., Poquet I. ( 2008). Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58 [CrossRef]
    [Google Scholar]
  39. Nobbs A. H., Lamont R. J., Jenkinson H. F. ( 2009). Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450 [View Article][PubMed]
    [Google Scholar]
  40. Orihuela C. J., Radin J. N., Sublett J. E., Gao G., Kaushal D., Tuomanen E. I. ( 2004). Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72:5582–5596 [View Article][PubMed]
    [Google Scholar]
  41. Poquet I., Ehrlich S. D., Gruss A. ( 1998). An export-specific reporter designed for gram-positive bacteria: application to Lactococcus lactis . J Bacteriol 180:1904–1912
    [Google Scholar]
  42. Rennemeier C., Hammerschmidt S., Niemann S., Inamura S., Zähringer U., Kehrel B. E. ( 2007). Thrombospondin-1 promotes cellular adherence of gram-positive pathogens via recognition of peptidoglycan. FASEB J 21:3118–3132 [CrossRef]
    [Google Scholar]
  43. Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H. & other authors ( 2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506 [View Article][PubMed]
    [Google Scholar]
  44. Wells J. M., Wilson P. W., Le Page R. W. ( 1993). Improved cloning vectors and transformation procedure for Lactococcus lactis . J Appl Bacteriol 74:629–636 [View Article][PubMed]
    [Google Scholar]
  45. Wu J., Kamimura N., Takeo T., Suga S., Wakui M., Maruyama T., Mikoshiba K. ( 2000). 2-Aminoethoxydiphenyl borate modulates kinetics of intracellular Ca2+ signals mediated by inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in single pancreatic acinar cells of mouse. Mol Pharmacol 58:1368–1374[PubMed]
    [Google Scholar]
  46. Zhang J. R., Mostov K. E., Lamm M. E., Nanno M., Shimida S., Ohwaki M., Tuomanen E. ( 2000). The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837 [View Article][PubMed]
    [Google Scholar]
  47. Zhou X. X., Li W. F., Ma G. X., Pan Y. J. ( 2006). The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv 24:285–295 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053603-0
Loading
/content/journal/micro/10.1099/mic.0.053603-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error