1887

Abstract

Identification of genes regulated by the ferric uptake regulator (Fur) protein has provided insights into the diverse mechanisms of adaptation to iron limitation. In the soil bacterium , Fur senses iron sufficiency and represses genes that enable iron uptake, including biosynthetic and transport genes for the siderophore bacillibactin and uptake systems for siderophores produced by other organisms. We here demonstrate that Fur regulates (formerly ), which encodes a haem monooxygenase. HmoA is the first characterized member of a divergent group of putative monooxygenases that cluster separately from the well-characterized IsdG family. also encodes an IsdG family protein designated HmoB (formerly YhgC). Unlike , is constitutively expressed and not under Fur control. HmoA and HmoB both bind haemin with approximately 1 : 1 stoichiometry and degrade haemin in the presence of an electron donor. Mutational and spectroscopic analyses indicate that HmoA and HmoB have distinct active site architectures and interact differently with haem. We further show that can use haem as an iron source, but that this ability is independent of HmoA and HmoB.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053579-0
2011-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3221.html?itemId=/content/journal/micro/10.1099/mic.0.053579-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C. , Robinson A. K. , Rodríguez-Quiñones F. . ( 2003; ). Bacterial iron homeostasis. . FEMS Microbiol Rev 27:, 215–237. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anzaldi L. L. , Skaar E. P. . ( 2010; ). Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. . Infect Immun 78:, 4977–4989. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arnold K. , Bordoli L. , Kopp J. , Schwede T. . ( 2006; ). The swiss-model workspace: a web-based environment for protein structure homology modelling. . Bioinformatics 22:, 195–201. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baichoo N. , Helmann J. D. . ( 2002; ). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. . J Bacteriol 184:, 5826–5832. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baichoo N. , Wang T. , Ye R. , Helmann J. D. . ( 2002; ). Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. . Mol Microbiol 45:, 1613–1629. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bsat N. , Helmann J. D. . ( 1999; ). Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. . J Bacteriol 181:, 4299–4307.[PubMed]
    [Google Scholar]
  7. Bsat N. , Herbig A. , Casillas-Martinez L. , Setlow P. , Helmann J. D. . ( 1998; ). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. . Mol Microbiol 29:, 189–198. [CrossRef] [PubMed]
    [Google Scholar]
  8. Butcher B. G. , Helmann J. D. . ( 2006; ). Identification of Bacillus subtilis σw-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli . . Mol Microbiol 60:, 765–782. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cao J. , Woodhall M. R. , Alvarez J. , Cartron M. L. , Andrews S. C. . ( 2007; ). EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157 : H7. . Mol Microbiol 65:, 857–875. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen L. , James L. P. , Helmann J. D. . ( 1993; ). Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. . J Bacteriol 175:, 5428–5437.[PubMed]
    [Google Scholar]
  11. Cornelissen C. N. . ( 2003; ). Transferrin-iron uptake by Gram-negative bacteria. . Front Biosci 8:, d836–d847. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cutting S. M. , VanderHorn P. B. . ( 1990; ). Genetic analysis. . In Molecular Biological Methods for Bacillus, pp. 27–74. Chichester:: Wiley;.
    [Google Scholar]
  13. Frankenberg-Dinkel N. . ( 2004; ). Bacterial heme oxygenases. . Antioxid Redox Signal 6:, 825–834.[PubMed] [CrossRef]
    [Google Scholar]
  14. Fuangthong M. , Helmann J. D. . ( 2003; ). Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. . J Bacteriol 185:, 6348–6357. [CrossRef] [PubMed]
    [Google Scholar]
  15. Grosse C. , Scherer J. , Koch D. , Otto M. , Taudte N. , Grass G. . ( 2006; ). A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. . Mol Microbiol 62:, 120–131. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ho S. N. , Hunt H. D. , Horton R. M. , Pullen J. K. , Pease L. R. . ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. . Gene 77:, 51–59. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kunkle C. A. , Schmitt M. P. . ( 2007; ). Comparative analysis of hmuO function and expression in Corynebacterium species. . J Bacteriol 189:, 3650–3654. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee J. W. , Helmann J. D. . ( 2007; ). Functional specialization within the Fur family of metalloregulators. . Biometals 20:, 485–499. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lee W. C. , Reniere M. L. , Skaar E. P. , Murphy M. E. . ( 2008; ). Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus. . J Biol Chem 283:, 30957–30963. [CrossRef] [PubMed]
    [Google Scholar]
  20. Létoffé S. , Heuck G. , Delepelaire P. , Lange N. , Wandersman C. . ( 2009; ). Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. . Proc Natl Acad Sci U S A 106:, 11719–11724. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lin C. Y. , Lin F. K. , Lin C. H. , Lai L. W. , Hsu H. J. , Chen S. H. , Hsiung C. A. . ( 2005; ). POWER: PhylOgenetic WEb Repeater – an integrated and user-optimized framework for biomolecular phylogenetic analysis. . Nucleic Acids Res 33: (Web Server), W553–W556. [CrossRef]
    [Google Scholar]
  22. Marchler-Bauer A. , Anderson J. B. , Derbyshire M. K. , DeWeese-Scott C. , Gonzales N. R. , Gwadz M. , Hao L. , He S. , Hurwitz D. I. et al. ( 2007; ). CDD: a conserved domain database for interactive domain family analysis. . Nucleic Acids Res 35: (Database issue), D237–D240. [CrossRef] [PubMed]
    [Google Scholar]
  23. May J. J. , Wendrich T. M. , Marahiel M. A. . ( 2001; ). The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. . J Biol Chem 276:, 7209–7217. [CrossRef] [PubMed]
    [Google Scholar]
  24. Miczák A. . ( 1977; ). Porphyrin and corrinoid mutants of Bacillus subtilis. . J Bacteriol 131:, 379–381.[PubMed]
    [Google Scholar]
  25. Miethke M. , Klotz O. , Linne U. , May J. J. , Beckering C. L. , Marahiel M. A. . ( 2006; ). Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. . Mol Microbiol 61:, 1413–1427. [CrossRef] [PubMed]
    [Google Scholar]
  26. Miller J. H. . ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  27. Moore C. M. , Helmann J. D. . ( 2005; ). Metal ion homeostasis in Bacillus subtilis. . Curr Opin Microbiol 8:, 188–195. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nienaber A. , Hennecke H. , Fischer H. M. . ( 2001; ). Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. . Mol Microbiol 41:, 787–800. [CrossRef] [PubMed]
    [Google Scholar]
  29. Noya F. , Arias A. , Fabiano E. . ( 1997; ). Heme compounds as iron sources for nonpathogenic Rhizobium bacteria. . J Bacteriol 179:, 3076–3078.[PubMed]
    [Google Scholar]
  30. Ollinger J. , Song K. B. , Antelmann H. , Hecker M. , Helmann J. D. . ( 2006; ). Role of the Fur regulon in iron transport in Bacillus subtilis. . J Bacteriol 188:, 3664–3673. [CrossRef] [PubMed]
    [Google Scholar]
  31. Puri S. , O’Brian M. R. . ( 2006; ). The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes. . J Bacteriol 188:, 6476–6482. [CrossRef] [PubMed]
    [Google Scholar]
  32. Rasmussen S. , Nielsen H. B. , Jarmer H. . ( 2009; ). The transcriptionally active regions in the genome of Bacillus subtilis. . Mol Microbiol 73:, 1043–1057. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ratliff M. , Zhu W. , Deshmukh R. , Wilks A. , Stojiljkovic I. . ( 2001; ). Homologues of neisserial heme oxygenase in Gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. . J Bacteriol 183:, 6394–6403. [CrossRef] [PubMed]
    [Google Scholar]
  34. Reniere M. L. , Skaar E. P. . ( 2008; ). Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. . Mol Microbiol 69:, 1304–1315. [CrossRef] [PubMed]
    [Google Scholar]
  35. Reniere M. L. , Ukpabi G. N. , Harry S. R. , Stec D. F. , Krull R. , Wright D. W. , Bachmann B. O. , Murphy M. E. , Skaar E. P. . ( 2010; ). The IsdG-family of haem oxygenases degrades haem to a novel chromophore. . Mol Microbiol 75:, 1529–1538. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sambrook J. , Russell D. W. . ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  37. Schiött T. , Throne-Holst M. , Hederstedt L. . ( 1997; ). Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome c biogenesis. . J Bacteriol 179:, 4523–4529.[PubMed]
    [Google Scholar]
  38. Sigman J. A. , Wang X. , Lu Y. . ( 2001; ). Coupled oxidation of heme by myoglobin is mediated by exogenous peroxide. . J Am Chem Soc 123:, 6945–6946. [CrossRef] [PubMed]
    [Google Scholar]
  39. Skaar E. P. . ( 2010; ). The battle for iron between bacterial pathogens and their vertebrate hosts. . PLoS Pathog 6:, e1000949. [CrossRef] [PubMed]
    [Google Scholar]
  40. Skaar E. P. , Schneewind O. . ( 2004; ). Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. . Microbes Infect 6:, 390–397. [CrossRef] [PubMed]
    [Google Scholar]
  41. Skaar E. P. , Gaspar A. H. , Schneewind O. . ( 2004; ). IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. . J Biol Chem 279:, 436–443. [CrossRef] [PubMed]
    [Google Scholar]
  42. Skaar E. P. , Gaspar A. H. , Schneewind O. . ( 2006; ). Bacillus anthracis IsdG, a heme-degrading monooxygenase. . J Bacteriol 188:, 1071–1080. [CrossRef] [PubMed]
    [Google Scholar]
  43. Slack F. J. , Mueller J. P. , Sonenshein A. L. . ( 1993; ). Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon. . J Bacteriol 175:, 4605–4614.[PubMed]
    [Google Scholar]
  44. Tullius M. V. , Harmston C. A. , Owens C. P. , Chim N. , Morse R. P. , McMath L. M. , Iniguez A. , Kimmey J. M. , Sawaya M. R. et al. ( 2011; ). Discovery and characterization of a unique mycobacterial heme acquisition system. . Proc Natl Acad Sci U S A 108:, 5051–5056. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wilks A. . ( 2002; ). Heme oxygenase: evolution, structure, and mechanism. . Antioxid Redox Signal 4:, 603–614. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wilks A. , Schmitt M. P. . ( 1998; ). Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. . J Biol Chem 273:, 837–841. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wong G. B. , Kappel M. J. , Raymond K. N. , Matzanke B. , Winkelmann G. . ( 1983; ). Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. . J Am Chem Soc 105:, 810–815. [CrossRef]
    [Google Scholar]
  48. Wu R. , Skaar E. P. , Zhang R. , Joachimiak G. , Gornicki P. , Schneewind O. , Joachimiak A. . ( 2005; ). Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. . J Biol Chem 280:, 2840–2846. [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhu W. , Wilks A. , Stojiljkovic I. . ( 2000; ). Degradation of heme in Gram-negative bacteria: the product of the hemO gene of neisseriae is a heme oxygenase. . J Bacteriol 182:, 6783–6790. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zuber P. , Losick R. . ( 1987; ). Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. . J Bacteriol 169:, 2223–2230.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053579-0
Loading
/content/journal/micro/10.1099/mic.0.053579-0
Loading

Data & Media loading...

Supplements

Supplementary Table S1 

PDF

Supplementary Fig. S1 legend 

PDF

Supplementary Fig. S1 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error