1887

Abstract

Identification of genes regulated by the ferric uptake regulator (Fur) protein has provided insights into the diverse mechanisms of adaptation to iron limitation. In the soil bacterium , Fur senses iron sufficiency and represses genes that enable iron uptake, including biosynthetic and transport genes for the siderophore bacillibactin and uptake systems for siderophores produced by other organisms. We here demonstrate that Fur regulates (formerly ), which encodes a haem monooxygenase. HmoA is the first characterized member of a divergent group of putative monooxygenases that cluster separately from the well-characterized IsdG family. also encodes an IsdG family protein designated HmoB (formerly YhgC). Unlike , is constitutively expressed and not under Fur control. HmoA and HmoB both bind haemin with approximately 1 : 1 stoichiometry and degrade haemin in the presence of an electron donor. Mutational and spectroscopic analyses indicate that HmoA and HmoB have distinct active site architectures and interact differently with haem. We further show that can use haem as an iron source, but that this ability is independent of HmoA and HmoB.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053579-0
2011-11-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3221.html?itemId=/content/journal/micro/10.1099/mic.0.053579-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. ( 2003;). Bacterial iron homeostasis. FEMS Microbiol Rev27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  2. Anzaldi L. L., Skaar E. P.. ( 2010;). Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun78:4977–4989 [CrossRef][PubMed]
    [Google Scholar]
  3. Arnold K., Bordoli L., Kopp J., Schwede T.. ( 2006;). The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics22:195–201 [CrossRef][PubMed]
    [Google Scholar]
  4. Baichoo N., Helmann J. D.. ( 2002;). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol184:5826–5832 [CrossRef][PubMed]
    [Google Scholar]
  5. Baichoo N., Wang T., Ye R., Helmann J. D.. ( 2002;). Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol45:1613–1629 [CrossRef][PubMed]
    [Google Scholar]
  6. Bsat N., Helmann J. D.. ( 1999;). Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. . J Bacteriol181:4299–4307[PubMed]
    [Google Scholar]
  7. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D.. ( 1998;). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol29:189–198 [CrossRef][PubMed]
    [Google Scholar]
  8. Butcher B. G., Helmann J. D.. ( 2006;). Identification of Bacillus subtilis σw-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli . Mol Microbiol60:765–782 [CrossRef][PubMed]
    [Google Scholar]
  9. Cao J., Woodhall M. R., Alvarez J., Cartron M. L., Andrews S. C.. ( 2007;). EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157 : H7. Mol Microbiol65:857–875 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen L., James L. P., Helmann J. D.. ( 1993;). Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol175:5428–5437[PubMed]
    [Google Scholar]
  11. Cornelissen C. N.. ( 2003;). Transferrin-iron uptake by Gram-negative bacteria. Front Biosci8:d836–d847 [CrossRef][PubMed]
    [Google Scholar]
  12. Cutting S. M., VanderHorn P. B.. ( 1990;). Genetic analysis. Molecular Biological Methods for Bacillus27–74 Chichester: Wiley;
    [Google Scholar]
  13. Frankenberg-Dinkel N.. ( 2004;). Bacterial heme oxygenases. Antioxid Redox Signal6:825–834[PubMed][CrossRef]
    [Google Scholar]
  14. Fuangthong M., Helmann J. D.. ( 2003;). Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. . J Bacteriol185:6348–6357 [CrossRef][PubMed]
    [Google Scholar]
  15. Grosse C., Scherer J., Koch D., Otto M., Taudte N., Grass G.. ( 2006;). A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. . Mol Microbiol62:120–131 [CrossRef][PubMed]
    [Google Scholar]
  16. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. ( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  17. Kunkle C. A., Schmitt M. P.. ( 2007;). Comparative analysis of hmuO function and expression in Corynebacterium species. J Bacteriol189:3650–3654 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee J. W., Helmann J. D.. ( 2007;). Functional specialization within the Fur family of metalloregulators. Biometals20:485–499 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee W. C., Reniere M. L., Skaar E. P., Murphy M. E.. ( 2008;). Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus. . J Biol Chem283:30957–30963 [CrossRef][PubMed]
    [Google Scholar]
  20. Létoffé S., Heuck G., Delepelaire P., Lange N., Wandersman C.. ( 2009;). Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A106:11719–11724 [CrossRef][PubMed]
    [Google Scholar]
  21. Lin C. Y., Lin F. K., Lin C. H., Lai L. W., Hsu H. J., Chen S. H., Hsiung C. A.. ( 2005;). POWER: PhylOgenetic WEb Repeater – an integrated and user-optimized framework for biomolecular phylogenetic analysis. Nucleic Acids Res33:Web ServerW553–W556 [CrossRef]
    [Google Scholar]
  22. Marchler-Bauer A., Anderson J. B., Derbyshire M. K., DeWeese-Scott C., Gonzales N. R., Gwadz M., Hao L., He S., Hurwitz D. I. et al. ( 2007;). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res35:Database issueD237–D240 [CrossRef][PubMed]
    [Google Scholar]
  23. May J. J., Wendrich T. M., Marahiel M. A.. ( 2001;). The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem276:7209–7217 [CrossRef][PubMed]
    [Google Scholar]
  24. Miczák A.. ( 1977;). Porphyrin and corrinoid mutants of Bacillus subtilis. . J Bacteriol131:379–381[PubMed]
    [Google Scholar]
  25. Miethke M., Klotz O., Linne U., May J. J., Beckering C. L., Marahiel M. A.. ( 2006;). Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. . Mol Microbiol61:1413–1427 [CrossRef][PubMed]
    [Google Scholar]
  26. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Moore C. M., Helmann J. D.. ( 2005;). Metal ion homeostasis in Bacillus subtilis. . Curr Opin Microbiol8:188–195 [CrossRef][PubMed]
    [Google Scholar]
  28. Nienaber A., Hennecke H., Fischer H. M.. ( 2001;). Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. . Mol Microbiol41:787–800 [CrossRef][PubMed]
    [Google Scholar]
  29. Noya F., Arias A., Fabiano E.. ( 1997;). Heme compounds as iron sources for nonpathogenic Rhizobium bacteria. J Bacteriol179:3076–3078[PubMed]
    [Google Scholar]
  30. Ollinger J., Song K. B., Antelmann H., Hecker M., Helmann J. D.. ( 2006;). Role of the Fur regulon in iron transport in Bacillus subtilis. . J Bacteriol188:3664–3673 [CrossRef][PubMed]
    [Google Scholar]
  31. Puri S., O’Brian M. R.. ( 2006;). The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes. J Bacteriol188:6476–6482 [CrossRef][PubMed]
    [Google Scholar]
  32. Rasmussen S., Nielsen H. B., Jarmer H.. ( 2009;). The transcriptionally active regions in the genome of Bacillus subtilis. . Mol Microbiol73:1043–1057 [CrossRef][PubMed]
    [Google Scholar]
  33. Ratliff M., Zhu W., Deshmukh R., Wilks A., Stojiljkovic I.. ( 2001;). Homologues of neisserial heme oxygenase in Gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. . J Bacteriol183:6394–6403 [CrossRef][PubMed]
    [Google Scholar]
  34. Reniere M. L., Skaar E. P.. ( 2008;). Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. Mol Microbiol69:1304–1315 [CrossRef][PubMed]
    [Google Scholar]
  35. Reniere M. L., Ukpabi G. N., Harry S. R., Stec D. F., Krull R., Wright D. W., Bachmann B. O., Murphy M. E., Skaar E. P.. ( 2010;). The IsdG-family of haem oxygenases degrades haem to a novel chromophore. Mol Microbiol75:1529–1538 [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Schiött T., Throne-Holst M., Hederstedt L.. ( 1997;). Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome c biogenesis. J Bacteriol179:4523–4529[PubMed]
    [Google Scholar]
  38. Sigman J. A., Wang X., Lu Y.. ( 2001;). Coupled oxidation of heme by myoglobin is mediated by exogenous peroxide. J Am Chem Soc123:6945–6946 [CrossRef][PubMed]
    [Google Scholar]
  39. Skaar E. P.. ( 2010;). The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog6:e1000949 [CrossRef][PubMed]
    [Google Scholar]
  40. Skaar E. P., Schneewind O.. ( 2004;). Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect6:390–397 [CrossRef][PubMed]
    [Google Scholar]
  41. Skaar E. P., Gaspar A. H., Schneewind O.. ( 2004;). IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. . J Biol Chem279:436–443 [CrossRef][PubMed]
    [Google Scholar]
  42. Skaar E. P., Gaspar A. H., Schneewind O.. ( 2006;). Bacillus anthracis IsdG, a heme-degrading monooxygenase. J Bacteriol188:1071–1080 [CrossRef][PubMed]
    [Google Scholar]
  43. Slack F. J., Mueller J. P., Sonenshein A. L.. ( 1993;). Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon. J Bacteriol175:4605–4614[PubMed]
    [Google Scholar]
  44. Tullius M. V., Harmston C. A., Owens C. P., Chim N., Morse R. P., McMath L. M., Iniguez A., Kimmey J. M., Sawaya M. R. et al. ( 2011;). Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A108:5051–5056 [CrossRef][PubMed]
    [Google Scholar]
  45. Wilks A.. ( 2002;). Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal4:603–614 [CrossRef][PubMed]
    [Google Scholar]
  46. Wilks A., Schmitt M. P.. ( 1998;). Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem273:837–841 [CrossRef][PubMed]
    [Google Scholar]
  47. Wong G. B., Kappel M. J., Raymond K. N., Matzanke B., Winkelmann G.. ( 1983;). Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. J Am Chem Soc105:810–815 [CrossRef]
    [Google Scholar]
  48. Wu R., Skaar E. P., Zhang R., Joachimiak G., Gornicki P., Schneewind O., Joachimiak A.. ( 2005;). Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. J Biol Chem280:2840–2846 [CrossRef][PubMed]
    [Google Scholar]
  49. Zhu W., Wilks A., Stojiljkovic I.. ( 2000;). Degradation of heme in Gram-negative bacteria: the product of the hemO gene of neisseriae is a heme oxygenase. J Bacteriol182:6783–6790 [CrossRef][PubMed]
    [Google Scholar]
  50. Zuber P., Losick R.. ( 1987;). Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. . J Bacteriol169:2223–2230[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053579-0
Loading
/content/journal/micro/10.1099/mic.0.053579-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error