1887

Abstract

Members of the economically important ascomycete genus are ubiquitously distributed around the world. The mycoparasitic lifestyle and plant defence-inducing interactions of spp. make them ideal biocontrol agents. Of the enzymes that produce secondary metabolites, some of which likely play important roles in biocontrol processes, polyketide synthase (PKSs) have garnered less attention than non-ribosomal peptide synthetases such as those that produce peptaibols. We have taken a phylogenomic approach to study the PKS repertoire encoded in the genomes of , and . Our analysis lays a foundation for future research related to PKSs within the genus and in other filamentous fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053462-0
2012-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/147.html?itemId=/content/journal/micro/10.1099/mic.0.053462-0&mimeType=html&fmt=ahah

References

  1. Baker S. E.. ( 2008;). Aspergillus genomics and DHN-melanin conidial pigmentation. . In Aspergillus in the Genomic Era, pp. 73–85. Edited by Varga J., Samson R. A... Wageningen, The Netherlands:: Wageningen Academic Publishers;.
    [Google Scholar]
  2. Bushley K. E., Turgeon B. G.. ( 2010;). Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. . BMC Evol Biol 10:, 26. [CrossRef][PubMed]
    [Google Scholar]
  3. Bushley K. E., Ripoll D. R., Turgeon B. G.. ( 2008;). Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. . BMC Evol Biol 8:, 328. [CrossRef][PubMed]
    [Google Scholar]
  4. Chiang Y. M., Oakley B. R., Keller N. P., Wang C. C.. ( 2010;). Unraveling polyketide synthesis in members of the genus Aspergillus. . Appl Microbiol Biotechnol 86:, 1719–1736. [CrossRef][PubMed]
    [Google Scholar]
  5. Chiang Y. M., Meyer K. M., Praseuth M., Baker S. E., Bruno K. S., Wang C. C.. ( 2011;). Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. . Fungal Genet Biol 48:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  6. Cox R. J.. ( 2007;). Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. . Org Biomol Chem 5:, 2010–2026. [CrossRef][PubMed]
    [Google Scholar]
  7. Cramer R. A. Jr, Stajich J. E., Yamanaka Y., Dietrich F. S., Steinbach W. J., Perfect J. R.. ( 2006;). Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. . Gene 383:, 24–32. [CrossRef][PubMed]
    [Google Scholar]
  8. Frandsen R. J., Schütt C., Lund B. W., Staerk D., Nielsen J., Olsson S., Giese H.. ( 2011;). Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. . J Biol Chem 286:, 10419–10428. [CrossRef][PubMed]
    [Google Scholar]
  9. Gaffoor I., Brown D. W., Plattner R., Proctor R. H., Qi W., Trail F.. ( 2005;). Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). . Eukaryot Cell 4:, 1926–1933. [CrossRef][PubMed]
    [Google Scholar]
  10. Galagan J. E., Calvo S. E., Borkovich K. A., Selker E. U., Read N. D., Jaffe D., FitzHugh W., Ma L. J., Smirnov S.. & other authors ( 2003;). The genome sequence of the filamentous fungus Neurospora crassa. . Nature 422:, 859–868. [CrossRef][PubMed]
    [Google Scholar]
  11. Jørgensen T. R., Park J., Arentshorst M., van Welzen A. M., Lamers G., Vankuyk P. A., Damveld R. A., van den Hondel C. A., Nielsen K. F.. & other authors ( 2011;). The molecular and genetic basis of conidial pigmentation in Aspergillus niger. . Fungal Genet Biol 48:, 544–553. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim J. E., Han K. H., Jin J., Kim H., Kim J. C., Yun S. H., Lee Y. W.. ( 2005;). Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. . Appl Environ Microbiol 71:, 1701–1708. [CrossRef][PubMed]
    [Google Scholar]
  13. Kroken S., Glass N. L., Taylor J. W., Yoder O. C., Turgeon B. G.. ( 2003;). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. . Proc Natl Acad Sci U S A 100:, 15670–15675. [CrossRef][PubMed]
    [Google Scholar]
  14. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A.. & other authors ( 2011;). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. . Genome Biol 12:, R40. [CrossRef][PubMed]
    [Google Scholar]
  15. Langfelder K., Jahn B., Gehringer H., Schmidt A., Wanner G., Brakhage A. A.. ( 1998;). Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. . Med Microbiol Immunol (Berl) 187:, 79–89. [CrossRef][PubMed]
    [Google Scholar]
  16. Lee B. N., Kroken S., Chou D. Y., Robbertse B., Yoder O. C., Turgeon B. G.. ( 2005;). Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. . Eukaryot Cell 4:, 545–555. [CrossRef][PubMed]
    [Google Scholar]
  17. Librado P., Rozas J.. ( 2009;). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. . Bioinformatics 25:, 1451–1452. [CrossRef][PubMed]
    [Google Scholar]
  18. Linnemannstöns P., Schulte J., del Mar Prado M., Proctor R. H., Avalos J., Tudzynski B.. ( 2002;). The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. . Fungal Genet Biol 37:, 134–148. [CrossRef][PubMed]
    [Google Scholar]
  19. Malz S., Grell M. N., Thrane C., Maier F. J., Rosager P., Felk A., Albertsen K. S., Salomon S., Bohn L.. & other authors ( 2005;). Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. . Fungal Genet Biol 42:, 420–433. [CrossRef][PubMed]
    [Google Scholar]
  20. Martinez D., Berka R. M., Henrissat B., Saloheimo M., Arvas M., Baker S. E., Chapman J., Chertkov O., Coutinho P. M.. & other authors ( 2008;). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). . Nat Biotechnol 26:, 553–560. [CrossRef][PubMed]
    [Google Scholar]
  21. Muggia L., Schmitt I., Grube M.. ( 2008;). Purifying selection is a prevailing motif in the evolution of ketoacyl synthase domains of polyketide synthases from lichenized fungi. . Mycol Res 112:, 277–288. [CrossRef][PubMed]
    [Google Scholar]
  22. Papadopoulos J. S., Agarwala R.. ( 2007;). cobalt: constraint-based alignment tool for multiple protein sequences. . Bioinformatics 23:, 1073–1079. [CrossRef][PubMed]
    [Google Scholar]
  23. Rice P., Longden I., Bleasby A.. ( 2000;). emboss: the European Molecular Biology Open Software Suite. . Trends Genet 16:, 276–277. [CrossRef][PubMed]
    [Google Scholar]
  24. Ridley C. P., Lee H. Y., Khosla C.. ( 2008;). Evolution of polyketide synthases in bacteria. . Proc Natl Acad Sci U S A 105:, 4595–4600. [CrossRef][PubMed]
    [Google Scholar]
  25. Schuster A., Schmoll M.. ( 2010;). Biology and biotechnology of Trichoderma. . Appl Microbiol Biotechnol 87:, 787–799. [CrossRef][PubMed]
    [Google Scholar]
  26. Seidl V., Huemer B., Seiboth B., Kubicek C. P.. ( 2005;). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. . FEBS J 272:, 5923–5939. [CrossRef][PubMed]
    [Google Scholar]
  27. Selker E. U., Garrett P. W.. ( 1988;). DNA sequence duplications trigger gene inactivation in Neurospora crassa. . Proc Natl Acad Sci U S A 85:, 6870–6874. [CrossRef][PubMed]
    [Google Scholar]
  28. Selker E. U., Jensen B. C., Richardson G. A.. ( 1987a;). A portable signal causing faithful DNA methylation de novo in Neurospora crassa. . Science 238:, 48–53. [CrossRef][PubMed]
    [Google Scholar]
  29. Selker E. U., Cambareri E. B., Jensen B. C., Haack K. R.. ( 1987b;). Rearrangement of duplicated DNA in specialized cells of Neurospora. . Cell 51:, 741–752. [CrossRef][PubMed]
    [Google Scholar]
  30. Sharp P. M., Li W. H.. ( 1987;). The codon adaptation index–a measure of directional synonymous codon usage bias, and its potential applications. . Nucleic Acids Res 15:, 1281–1295. [CrossRef][PubMed]
    [Google Scholar]
  31. Stamatakis A., Hoover P., Rougemont J.. ( 2008;). A rapid bootstrap algorithm for the RAxML Web servers. . Syst Biol 57:, 758–771. [CrossRef][PubMed]
    [Google Scholar]
  32. Tajima F.. ( 1989;). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. . Genetics 123:, 585–595.[PubMed]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  34. Tsai H. F., Chang Y. C., Washburn R. G., Wheeler M. H., Kwon-Chung K. J.. ( 1998;). The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. . J Bacteriol 180:, 3031–3038.[PubMed]
    [Google Scholar]
  35. Tsai H. F., Fujii I., Watanabe A., Wheeler M. H., Chang Y. C., Yasuoka Y., Ebizuka Y., Kwon-Chung K. J.. ( 2001;). Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. . J Biol Chem 276:, 29292–29298. [CrossRef][PubMed]
    [Google Scholar]
  36. Viterbo A., Wiest A., Brotman Y., Chet I., Kenerley C.. ( 2007;). The 18mer peptaibols from Trichoderma virens elicit plant defence responses. . Mol Plant Pathol 8:, 737–746. [CrossRef][PubMed]
    [Google Scholar]
  37. Watanabe A., Fujii I., Sankawa U., Mayorga M. E., Timberlake W. E., Ebizuka Y.. ( 1999;). Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. . Tetrahedron Lett 40:, 91–94. [CrossRef]
    [Google Scholar]
  38. Watanabe A., Fujii I., Tsai H., Chang Y. C., Kwon-Chung K. J., Ebizuka Y.. ( 2000;). Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. . FEMS Microbiol Lett 192:, 39–44. [CrossRef][PubMed]
    [Google Scholar]
  39. Wiemann P., Willmann A., Straeten M., Kleigrewe K., Beyer M., Humpf H. U., Tudzynski B.. ( 2009;). Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. . Mol Microbiol 72:, 931–946. [CrossRef][PubMed]
    [Google Scholar]
  40. Zucko J., Cullum J., Hranueli D., Long P. F.. ( 2011;). Evolutionary dynamics of modular polyketide synthases, with implications for protein design and engineering. . J Antibiot (Tokyo) 64:, 89–92. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053462-0
Loading
/content/journal/micro/10.1099/mic.0.053462-0
Loading

Data & Media loading...

Supplements

Supplementary figures and tables 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error