1887

Abstract

In , neither intracellular sorting nor ubiquitination of amino acid permeases is well understood. In the present study, we show that intracellular sorting of the amino acid permease Aat1p in depends on the presence of a nitrogen source in the growth medium. Under nitrogen-sufficient conditions, Aat1p appeared to be stably localized at the Golgi apparatus. In contrast, under nitrogen-insufficient conditions, Aat1p was sorted to the plasma membrane. Over time, plasma membrane-localized Aat1p was internalized and sorted to the lumen of the vacuole, where it was degraded. Sorting of Aat1p to the vacuolar lumen was dependent on the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular body. has three genes ( , and ) that are homologous to the ubiquitin ligase . Under nitrogen-sufficient conditions, Aat1–GFP was missorted to the plasma membrane in Δ cells and ubiquitinated Aat1p was not detected. These results suggest that Pub1p-mediated ubiquitination is required for retention of Aat1 at the Golgi under nitrogen-sufficient conditions. The Aat1p lysine mutant Aat1 was completely missorted to the plasma membrane under nitrogen-rich conditions. Furthermore, Aat1, Aat1 and Aat1 mutants were severely blocked in endocytosis. These results indicate that ubiquitination is an important determinant for localization and regulation of the Aat1p permease in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053389-0
2012-03-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/659.html?itemId=/content/journal/micro/10.1099/mic.0.053389-0&mimeType=html&fmt=ahah

References

  1. Alfa C., Fantes P., Hyams J., McLoed M., Warbrick E.. 1993; Experiments with Fission Yeast: A Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Aspuria P. J., Tamanoi F.. ( 2008;). The Tsc/Rheb signaling pathway controls basic amino acid uptake via the Cat1 permease in fission yeast. Mol Genet Genomics279:441–450 [CrossRef][PubMed]
    [Google Scholar]
  3. Ayscough K. R., Stryker J., Pokala N., Sanders M., Crews P., Drubin D. G.. ( 1997;). High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol137:399–416 [CrossRef][PubMed]
    [Google Scholar]
  4. Babst M.. ( 2005;). A protein’s final ESCRT. Traffic6:2–9 [CrossRef][PubMed]
    [Google Scholar]
  5. Chardwiriyapreecha S., Shimazu M., Morita T., Sekito T., Akiyama K., Takegawa K., Kakinuma Y.. ( 2008;). Identification of the fnx1 + and fnx2 + genes for vacuolar amino acid transporters in Schizosaccharomyces pombe . FEBS Lett582:2225–2230 [CrossRef][PubMed]
    [Google Scholar]
  6. Cooper J. P., Nimmo E. R., Allshire R. C., Cech T. R.. ( 1997;). Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature385:744–747 [CrossRef][PubMed]
    [Google Scholar]
  7. Cowart L. A., Obeid L. M.. ( 2007;). Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta1771:421–431[PubMed][CrossRef]
    [Google Scholar]
  8. De Craene J. O., Soetens O., Andre B.. ( 2001;). The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease. J Biol Chem276:43939–43948 [CrossRef][PubMed]
    [Google Scholar]
  9. Dickson R. C.. ( 1998;). Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu Rev Biochem67:27–48 [CrossRef][PubMed]
    [Google Scholar]
  10. Dickson R. C., Sumanasekera C., Lester R. L.. ( 2006;). Functions and metabolism of sphingolipids in Saccharomyces cerevisiae . Prog Lipid Res45:447–465 [CrossRef][PubMed]
    [Google Scholar]
  11. Dunn R., Klos D. A., Adler A. S., Hicke L.. ( 2004;). The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. J Cell Biol165:135–144 [CrossRef][PubMed]
    [Google Scholar]
  12. Edeling M. A., Smith C., Owen D.. ( 2006;). Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol7:32–44 [CrossRef][PubMed]
    [Google Scholar]
  13. Edidin M.. ( 2003;). The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct32:257–283 [CrossRef][PubMed]
    [Google Scholar]
  14. Grenson M.. ( 1983;). Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae . Eur J Biochem133:141–144 [CrossRef][PubMed]
    [Google Scholar]
  15. Grenson M., Hou C., Crabeel M.. ( 1970;). Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol103:770–777[PubMed]
    [Google Scholar]
  16. Grimm C., Kohli J., Murray J., Maundrell K.. ( 1988;). Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet215:81–86 [CrossRef][PubMed]
    [Google Scholar]
  17. Grossmann G., Malinsky J., Stahlschmidt W., Loibl M., Weig-Meckl I., Frommer W. B., Opekarová M., Tanner W.. ( 2008;). Plasma membrane microdomains regulate turnover of transport proteins in yeast. J Cell Biol183:1075–1088 [CrossRef][PubMed]
    [Google Scholar]
  18. Hartmann-Petersen R., Semple C. A. M., Ponting C. P., Hendil K. B., Gordon C.. ( 2003;). UBA domain containing proteins in fission yeast. Int J Biochem Cell Biol35:629–636 [CrossRef][PubMed]
    [Google Scholar]
  19. Hein C., Springael J. Y., Volland C., Haguenauer-Tsapis R., André B.. ( 1995;). NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol18:77–87 [CrossRef][PubMed]
    [Google Scholar]
  20. Holthuis J. C., Pomorski T., Raggers R. J., Sprong H., Van Meer G.. ( 2001;). The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev81:1689–1723[PubMed]
    [Google Scholar]
  21. Isshiki T., Mochizuki N., Maeda T., Yamamoto M.. ( 1992;). Characterization of a fission yeast gene, gpa2, that encodes a G alpha subunit involved in the monitoring of nutrition. Genes Dev6:12B2455–2462 [CrossRef][PubMed]
    [Google Scholar]
  22. Iwaki T., Osawa F., Onishi M., Koga T., Fujita Y., Hosomi A., Tanaka N., Fukui Y., Takegawa K.. ( 2003;). Characterization of vps33 +, a gene required for vacuolar biogenesis and protein sorting in Schizosaccharomyces pombe . Yeast20:845–855 [CrossRef][PubMed]
    [Google Scholar]
  23. Iwaki T., Onishi M., Ikeuchi M., Kita A., Sugiura R., Giga-Hama Y., Fukui Y., Takegawa K.. ( 2007;). Essential roles of class E Vps proteins for sorting into multivesicular bodies in Schizosaccharomyces pombe . Microbiology153:2753–2764 [CrossRef][PubMed]
    [Google Scholar]
  24. Iwaki T., Iefuji H., Hiraga Y., Hosomi A., Morita T., Giga-Hama Y., Takegawa K.. ( 2008;). Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe . Microbiology154:830–841 [CrossRef][PubMed]
    [Google Scholar]
  25. Jauniaux J. C., Grenson M.. ( 1990;). GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem190:39–44 [CrossRef][PubMed]
    [Google Scholar]
  26. Kita A., Sugiura R., Shoji H., He Y., Deng L., Lu Y., Sio S. O., Takegawa K., Sakaue M.. & other authors ( 2004;). Loss of Apm1, the micro1 subunit of the clathrin-associated adaptor-protein-1 complex, causes distinct phenotypes and synthetic lethality with calcineurin deletion in fission yeast. Mol Biol Cell15:2920–2931 [CrossRef][PubMed]
    [Google Scholar]
  27. Kübler E., Dohlman H. G., Lisanti M. P.. ( 1996;). Identification of Triton X-100 insoluble membrane domains in the yeast Saccharomyces cerevisiae. Lipid requirements for targeting of heterotrimeric G-protein subunits. J Biol Chem271:32975–32980 [CrossRef][PubMed]
    [Google Scholar]
  28. Lauwers E., André B.. ( 2006;). Association of yeast transporters with detergent-resistant membranes correlates with their cell-surface location. Traffic7:1045–1059 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee M. C., Hamamoto S., Schekman R.. ( 2002;). Ceramide biosynthesis is required for the formation of the oligomeric H+-ATPase Pma1p in the yeast endoplasmic reticulum. J Biol Chem277:22395–22401 [CrossRef][PubMed]
    [Google Scholar]
  30. Magasanik B., Kaiser C. A.. ( 2002;). Nitrogen regulation in Saccharomyces cerevisiae . Gene290:1–18 [CrossRef][PubMed]
    [Google Scholar]
  31. Maguy A., Hebert T. E., Nattel S.. ( 2006;). Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res69:798–807 [CrossRef][PubMed]
    [Google Scholar]
  32. Malínská K., Malínský J., Opekarová M., Tanner W.. ( 2003;). Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell14:4427–4436 [CrossRef][PubMed]
    [Google Scholar]
  33. Millán J., Qaidi M., Alonso M. A.. ( 2001;). Segregation of co-stimulatory components into specific T cell surface lipid rafts. Eur J Immunol31:467–473 [CrossRef][PubMed]
    [Google Scholar]
  34. Morita T., Takegawa K.. ( 2004;). A simple and efficient procedure for transformation of Schizosaccharomyces pombe . Yeast21:613–617 [CrossRef][PubMed]
    [Google Scholar]
  35. Nakamura T., Nakamura-Kubo M., Hirata A., Shimoda C.. ( 2001;). The Schizosaccharomyces pombe spo3 + gene is required for assembly of the forespore membrane and genetically interacts with psy1(+)-encoding syntaxin-like protein. Mol Biol Cell12:3955–3972[PubMed][CrossRef]
    [Google Scholar]
  36. Nakase M., Tani M., Morita T., Kitamoto H. K., Kashiwazaki J., Nakamura T., Hosomi A., Tanaka N., Takegawa K.. ( 2010;). Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma-membrane proteins in Schizosaccharomyces pombe . J Cell Sci123:1578–1587 [CrossRef][PubMed]
    [Google Scholar]
  37. Nikko E., Marini A. M., André B.. ( 2003;). Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J Biol Chem278:50732–50743 [CrossRef][PubMed]
    [Google Scholar]
  38. O’Donnell A. F., Apffel A., Gardner R. G., Cyert M. S.. ( 2010;). Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling. Mol Biol Cell21:3552–3566 [CrossRef][PubMed]
    [Google Scholar]
  39. Owen D. J., Collins B. M., Evans P. R.. ( 2004;). Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol20:153–191 [CrossRef][PubMed]
    [Google Scholar]
  40. Pelkmans L.. ( 2005;). Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta1746:295–304 [CrossRef][PubMed]
    [Google Scholar]
  41. Plumb M. J., Frampton J., Wainwright H., Walker M., Macleod K., Goodwin G., Harrison P.. ( 1989;). GATAAG; a cis-control region binding an erythroid-specific nuclear factor with a role in globin and non-globin gene expression. Nucleic Acids Res17:73–92 [CrossRef][PubMed]
    [Google Scholar]
  42. Risinger A. L., Kaiser C. A.. ( 2008;). Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking. Mol Biol Cell19:2962–2972 [CrossRef][PubMed]
    [Google Scholar]
  43. Risinger A. L., Cain N. E., Chen E. J., Kaiser C. A.. ( 2006;). Activity-dependent reversible inactivation of the general amino acid permease. Mol Biol Cell17:4411–4419 [CrossRef][PubMed]
    [Google Scholar]
  44. Roberg K. J., Rowley N., Kaiser C. A.. ( 1997;). Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae . J Cell Biol137:1469–1482 [CrossRef][PubMed]
    [Google Scholar]
  45. Rotin D., Staub O., Haguenauer-Tsapis R.. ( 2000;). Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol176:1–17 [CrossRef][PubMed]
    [Google Scholar]
  46. Rubio-Texeira M., Kaiser C. A.. ( 2006;). Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol Biol Cell17:3031–3050 [CrossRef][PubMed]
    [Google Scholar]
  47. Scott P. M., Bilodeau P. S., Zhdankina O., Winistorfer S. C., Hauglund M. J., Allaman M. M., Kearney W. R., Robertson A. D., Boman A. L., Piper R. C.. ( 2004;). GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol6:252–259 [CrossRef][PubMed]
    [Google Scholar]
  48. Simons K., Ikonen E.. ( 1997;). Functional rafts in cell membranes. Nature387:569–572 [CrossRef][PubMed]
    [Google Scholar]
  49. Soetens O., De Craene J. O., Andre B.. ( 2001;). Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem276:43949–43957 [CrossRef][PubMed]
    [Google Scholar]
  50. Springael J. Y., André B.. ( 1998;). Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae . Mol Biol Cell9:1253–1263[PubMed][CrossRef]
    [Google Scholar]
  51. Stanbrough M., Magasanik B.. ( 1995;). Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae . J Bacteriol177:94–102[PubMed]
    [Google Scholar]
  52. Tabuchi M., Tanaka N., Iwahara S., Takegawa K.. ( 1997;). The Schizosaccharomyces pombe gms1+ gene encodes an UDP-galactose transporter homologue required for protein galactosylation. Biochem Biophys Res Commun232:121–125 [CrossRef][PubMed]
    [Google Scholar]
  53. Tamai K. K., Shimoda C.. ( 2002;). The novel HECT-type ubiquitin-protein ligase Pub2p shares partially overlapping function with Pub1p in Schizosaccharomyces pombe . J Cell Sci115:1847–1857[PubMed]
    [Google Scholar]
  54. Tanaka N., Konomi M., Osumi M., Takegawa K.. ( 2001;). Characterization of a Schizosaccharomyces pombe mutant deficient in UDP-galactose transport activity. Yeast18:903–914 [CrossRef][PubMed]
    [Google Scholar]
  55. Umebayashi K., Nakano A.. ( 2003;). Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol161:1117–1131 [CrossRef][PubMed]
    [Google Scholar]
  56. Vida T. A., Emr S. D.. ( 1995;). A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol128:779–792 [CrossRef][PubMed]
    [Google Scholar]
  57. Wachtler V., Balasubramanian M. K.. ( 2006;). Yeast lipid rafts?–an emerging view. Trends Cell Biol16:1–4 [CrossRef][PubMed]
    [Google Scholar]
  58. Yashiroda H., Oguchi T., Yasuda Y., Toh-E A., Kikuchi Y.. ( 1996;). Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae . Mol Cell Biol16:3255–3263[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053389-0
Loading
/content/journal/micro/10.1099/mic.0.053389-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error