1887

Abstract

Polycyclic aromatic hydrocarbons (PAHs) comprise a group of priority organic pollutants that are toxic and/or carcinogenic. Phenanthrene, the simplest PAH among recognized priority pollutants, is commonly used as a model compound for the study of PAH biodegradation. sp. strain PNB, capable of degrading phenanthrene as a sole carbon and energy source, was isolated from a municipal waste-contaminated soil sample. A combination of chromatographic and spectrometric analyses, together with oxygen uptake and enzyme activity studies, suggested the presence of phenanthrene degradation pathways in this strain. Identification of metabolites suggested that initial dioxygenation of phenanthrene took place at both 3,4- and 1,2-carbon positions; -cleavage of resultant diols led to the formation of 1-hydroxy-2-naphthoic acid and 2-hydroxy-1-naphthoic acid, respectively. The hydroxynaphthoic acids, in turn, were metabolized by a -cleavage pathway(s), leading to the formation of 2,2-dicarboxychromene and 2-hydroxychromene-2-glyoxylic acid, respectively. These metabolites were subsequently transformed to catechol via salicylic acid, which further proceeds towards the tricarboxylic acid cycle leading to complete mineralization of the compound phenanthrene. The present study establishes the metabolism of hydroxynaphthoic acids by a -cleavage pathway in the degradation of phenanthrene, expanding our current understanding of microbial degradation of PAHs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053363-0
2012-03-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/685.html?itemId=/content/journal/micro/10.1099/mic.0.053363-0&mimeType=html&fmt=ahah

References

  1. Adachi K., Iwabuchi T., Sano H., Harayama S.. ( 1999;). Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J Bacteriol181:757–763[PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  3. Balashova N. V., Kosheleva I. A., Golovchenko N. P., Boronin A. M.. ( 1999;). Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem35:291–296 [CrossRef]
    [Google Scholar]
  4. Barnsley E. A.. ( 1983;). Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J Bacteriol154:113–117[PubMed]
    [Google Scholar]
  5. Basta T., Keck A., Klein J., Stolz A.. ( 2004;). Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J Bacteriol186:3862–3872 [CrossRef][PubMed]
    [Google Scholar]
  6. Bücker M., Glatt H. R., Platt K. L., Avnir D., Ittah Y., Blum J., Oesch F.. ( 1979;). Mutagenicity of phenanthrene and phenanthrene K-region derivatives. Mutat Res66:337–348 [CrossRef][PubMed]
    [Google Scholar]
  7. Cerniglia C. E.. ( 1992;). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation3:351–368 [CrossRef]
    [Google Scholar]
  8. Davies J. I., Evans W. C.. ( 1964;). Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J91:251–261[PubMed]
    [Google Scholar]
  9. Eaton R. W., Chapman P. J.. ( 1992;). Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol174:7542–7554[PubMed]
    [Google Scholar]
  10. Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T.. ( 1983;). Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science222:167–169 [CrossRef][PubMed]
    [Google Scholar]
  11. Evans W. C., Fernley H. N., Griffiths E.. ( 1965;). Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads: the ring fission mechanism. Biochem J95:819–831[PubMed]
    [Google Scholar]
  12. Ghosal D., Chakraborty J., Khara P., Dutta T. K.. ( 2010;). Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD. FEMS Microbiol Lett313:103–110 [CrossRef][PubMed]
    [Google Scholar]
  13. Ghosh D. K., Mishra A. K.. ( 1983;). Oxidation of phenanthrene by a strain of Micrococcus: evidence of protocatechuate pathway. Curr Microbiol9:219–224 [CrossRef]
    [Google Scholar]
  14. Gibson D. T., Subramanian V.. ( 1984;). Microbial degradation of aromatic hydrocarbons. Microbial Degradation of Organic Compounds181–252 Gibson D. T.. New York: Dekker;
    [Google Scholar]
  15. Gillam E. M. J., Guengerich F. P.. ( 2001;). Exploiting the versatility of human cytochrome P450 enzymes: the promise of blue roses from biotechnology. IUBMB Life52:271–277 [CrossRef][PubMed]
    [Google Scholar]
  16. Habe H., Omori T.. ( 2003;). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem67:225–243 [CrossRef][PubMed]
    [Google Scholar]
  17. Harpel M. R., Lipscomb J. D.. ( 1990;). Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans . J Biol Chem265:6301–6311[PubMed]
    [Google Scholar]
  18. Hayaishi O., Katagiri M., Rothberg S.. ( 1957;). Studies on oxygenases; pyrocatechase. J Biol Chem229:905–920[PubMed]
    [Google Scholar]
  19. Holtz J. G., Krieg N. R., Sneath P. H. A., Staley J. T.. ( 1994;). Bergey’s Manual of Determinative Bacteriology, 9th edn. Baltimore: Lippincott Williams and Wilkins;
    [Google Scholar]
  20. Houghton J. E., Shanley M. S.. ( 1994;). Catabolic potential of pseudomonads: a regulatory perspective. Biological Degradation and Bioremediation of Toxic Chemicals11–32 Chaudhry R. G.. London: Chapman & Hall;
    [Google Scholar]
  21. Iwabuchi T., Harayama S.. ( 1997;). Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol179:6488–6494[PubMed]
    [Google Scholar]
  22. Johnson J. L.. ( 1994;). Similarity analysis of rRNAs. Methods for General and Molecular Bacteriology683–700 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Keith L. H., Telliard W. A.. ( 1979;). Priority pollutants: I - a perspective view. Environ Sci Technol13:416–423 [CrossRef]
    [Google Scholar]
  24. Keum Y. S., Seo J. S., Hu Y., Li Q. X.. ( 2006;). Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol71:935–941 [CrossRef][PubMed]
    [Google Scholar]
  25. Kiyohara H., Nagao K.. ( 1978;). The catabolism of phenanthrene and naphthalene by bacteria. J Gen Microbiol105:69–75[CrossRef]
    [Google Scholar]
  26. Kiyohara H., Nagao K., Nomi R.. ( 1976;). Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric Biol Chem40:1075–1082 [CrossRef]
    [Google Scholar]
  27. Kojima Y., Itada N., Hayaishi O.. ( 1961;). Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem236:2223–2228[PubMed]
    [Google Scholar]
  28. Krivobok S., Kuony S., Meyer C., Louwagie M., Willison J. C., Jouanneau Y.. ( 2003;). Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol185:3828–3841 [CrossRef][PubMed]
    [Google Scholar]
  29. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  30. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. ( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  31. Mallick S., Chatterjee S., Dutta T. K.. ( 2007;). A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology153:2104–2115 [CrossRef][PubMed]
    [Google Scholar]
  32. Mallick S., Chakraborty J., Dutta T. K.. ( 2011;). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol37:64–90 [CrossRef][PubMed]
    [Google Scholar]
  33. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K.. ( 2006;). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol56:85–89 [CrossRef][PubMed]
    [Google Scholar]
  34. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  35. Moody J. D., Freeman J. P., Doerge D. R., Cerniglia C. E.. ( 2001;). Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol67:1476–1483 [CrossRef][PubMed]
    [Google Scholar]
  36. Ngai K. L., Neidle E. L., Ornston L. N.. ( 1990;). Catechol and chlorocatechol 1,2-dioxygenases. Methods Enzymol188:122–126 [CrossRef][PubMed]
    [Google Scholar]
  37. Parales R. E.. ( 2003;). The role of active-site residues in naphthalene dioxygenase. J Ind Microbiol Biotechnol30:271–278 [CrossRef][PubMed]
    [Google Scholar]
  38. Peng R.-H., Xiong A.-S., Xue Y., Fu X.-Y., Gao F., Zhao W., Tian Y.-S., Yao Q.-H.. ( 2008;). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev32:927–955 [CrossRef][PubMed]
    [Google Scholar]
  39. Pinyakong O., Habe H., Supaka N., Pinpanichkarn P., Juntongjin K., Yoshida T., Furihata K., Nojiri H., Yamane H., Omori T.. ( 2000;). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett191:115–121 [CrossRef][PubMed]
    [Google Scholar]
  40. Pinyakong O., Habe H., Omori T.. ( 2003;). The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol49:1–19 [CrossRef][PubMed]
    [Google Scholar]
  41. Romine M. F., Stillwell L. C., Wong K. K., Thurston S. J., Sisk E. C., Sensen C., Gaasterland T., Fredrickson J. K., Saffer J. D.. ( 1999;). Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol181:1585–1602[PubMed]
    [Google Scholar]
  42. Schuler L., Jouanneau Y., Chadhain S. M. N., Meyer C., Pouli M., Zylstra G. J., Hols P., Agathos S. N.. ( 2009;). Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol83:465–475 [CrossRef][PubMed]
    [Google Scholar]
  43. Seo J. S., Keum Y. S., Hu Y., Lee S. E., Li Q. X.. ( 2006;). Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere65:2388–2394 [CrossRef][PubMed]
    [Google Scholar]
  44. Seo J. S., Keum Y. S., Hu Y., Lee S. E., Li Q. X.. ( 2007;). Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation18:123–131 [CrossRef][PubMed]
    [Google Scholar]
  45. Seo J. S., Keum Y. S., Li Q. X.. ( 2009;). Bacterial degradation of aromatic compounds. Int J Environ Res Public Health6:278–309 [CrossRef][PubMed]
    [Google Scholar]
  46. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. Methods for General and Molecular Bacteriology611–654 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Stolz A.. ( 2009;). Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol81:793–811 [CrossRef][PubMed]
    [Google Scholar]
  48. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol51:1405–1417[PubMed]
    [Google Scholar]
  49. Yabuuchi E., Kosako Y.. ( 2005;). Order IV. Sphingomonadaceae . Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 2233–286 Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053363-0
Loading
/content/journal/micro/10.1099/mic.0.053363-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error