1887

Abstract

An important link between the environment and the physiological state of bacteria is the regulation of the transcription of a large number of genes by global transcription factors. One of the global regulators, Fis (actor for nversion timulation), is well studied in , but the role of this protein in pseudomonads has only been examined briefly. According to studies in , Fis regulates positively the flagellar movement of bacteria. In pseudomonads, flagellar movement is an important trait for the colonization of plant roots. Therefore we were interested in the role of the Fis protein in , especially the possible regulation of the colonization of plant roots. We observed that Fis reduced the migration of onto the apices of barley roots and thereby the competitiveness of bacteria on the roots. Moreover, we observed that overexpression of Fis drastically reduced swimming motility and facilitated biofilm formation, which could be the reason for the decreased migration of bacteria onto the root apices. It is possible that the elevated expression of Fis is important in the adaptation of during colonization of plant roots by promoting biofilm formation when the migration of bacteria is no longer favoured.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053355-0
2012-03-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/708.html?itemId=/content/journal/micro/10.1099/mic.0.053355-0&mimeType=html&fmt=ahah

References

  1. Adams M. H.. ( 1959;). Bacteriophages New York: Interscience Publishers, Inc;
    [Google Scholar]
  2. Bais H. P., Fall R., Vivanco J. M.. ( 2004;). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol134:307–319 [CrossRef][PubMed]
    [Google Scholar]
  3. Bais H. P., Weir T. L., Perry L. G., Gilroy S., Vivanco J. M.. ( 2006;). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol57:233–266 [CrossRef][PubMed]
    [Google Scholar]
  4. Ball C. A., Osuna R., Ferguson K. C., Johnson R. C.. ( 1992;). Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli . J Bacteriol174:8043–8056[PubMed]
    [Google Scholar]
  5. Bao Y., Lies D. P., Fu H., Roberts G. P.. ( 1991;). An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene109:167–168 [CrossRef][PubMed]
    [Google Scholar]
  6. Barahona E., Navazo A., Yousef-Coronado F., Aguirre de Cárcer D., Martínez-Granero F., Espinosa-Urgel M., Martín M., Rivilla R.. ( 2010;). Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol12:3185–3195 [CrossRef][PubMed]
    [Google Scholar]
  7. Barret M., Frey-Klett P., Guillerm-Erckelboudt A. Y., Boutin M., Guernec G., Sarniguet A.. ( 2009;). Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Mol Plant Microbe Interact22:1611–1623 [CrossRef][PubMed]
    [Google Scholar]
  8. Bartels F., Fernández S., Holtel A., Timmis K. N., de Lorenzo V.. ( 2001;). The essential HupB and HupN proteins of Pseudomonas putida provide redundant and nonspecific DNA-bending functions. J Biol Chem276:16641–16648 [CrossRef][PubMed]
    [Google Scholar]
  9. Bayley S. A., Duggleby C. J., Worsey M. J., Williams P. A., Hardy K. G., Broda P.. ( 1977;). Two modes of loss of the Tol function from Pseudomonas putida mt-2. Mol Gen Genet154:203–204 [CrossRef][PubMed]
    [Google Scholar]
  10. Beach M. B., Osuna R.. ( 1998;). Identification and characterization of the fis operon in enteric bacteria. J Bacteriol180:5932–5946[PubMed]
    [Google Scholar]
  11. Bloemberg G. V., Lugtenberg B. J.. ( 2001;). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol4:343–350 [CrossRef][PubMed]
    [Google Scholar]
  12. Boswell S., Mathew J., Beach M., Osuna R., Colón W.. ( 2004;). Variable contributions of tyrosine residues to the structural and spectroscopic properties of the factor for inversion stimulation. Biochemistry43:2964–2977 [CrossRef][PubMed]
    [Google Scholar]
  13. Bradley M. D., Beach M. B., de Koning A. P., Pratt T. S., Osuna R.. ( 2007;). Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology153:2922–2940 [CrossRef][PubMed]
    [Google Scholar]
  14. Cheng Z., Duan J., Hao Y., McConkey B. J., Glick B. R.. ( 2009;). Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (Canola). Mol Plant Microbe Interact22:686–694 [CrossRef][PubMed]
    [Google Scholar]
  15. Chin-A-Woeng T. F., Bloemberg G. V., Mulders I. H., Dekkers L. C., Lugtenberg B. J.. ( 2000;). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact13:1340–1345 [CrossRef][PubMed]
    [Google Scholar]
  16. Costacurta A., Vanderleyden J.. ( 1995;). Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol21:1–18 [CrossRef][PubMed]
    [Google Scholar]
  17. Dalgaard P., Koutsoumanis K.. ( 2001;). Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J Microbiol Methods43:183–196 [CrossRef][PubMed]
    [Google Scholar]
  18. De Weger L. A., van der Vlugt C. I., Wijfjes A. H., Bakker P. A., Schippers B., Lugtenberg B.. ( 1987;). Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol169:2769–2773[PubMed]
    [Google Scholar]
  19. Dennis P. G., Miller A. J., Hirsch P. R.. ( 2010;). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?. FEMS Microbiol Ecol72:313–327 [CrossRef][PubMed]
    [Google Scholar]
  20. Déziel E., Comeau Y., Villemur R.. ( 2001;). Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol183:1195–1204 [CrossRef][PubMed]
    [Google Scholar]
  21. Espinosa-Urgel M., Kolter R., Ramos J. L.. ( 2002;). Root colonization by Pseudomonas putida: love at first sight. Microbiology148:341–343[PubMed]
    [Google Scholar]
  22. Fletcher A.. ( 1977;). The effects of culture concentration and age, time and temperature on bacterial attachments to polystyrene. Can J Microbiol23:1–6 [CrossRef]
    [Google Scholar]
  23. Fujishige N. A., Kapadia N. N., De Hoff P. L., Hirsch A. M.. ( 2006;). Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol56:195–206 [CrossRef][PubMed]
    [Google Scholar]
  24. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S.. ( 2004;). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa . Dev Cell7:745–754 [CrossRef][PubMed]
    [Google Scholar]
  25. Harmsen M., Yang L., Pamp S. J., Tolker-Nielsen T.. ( 2010;). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol59:253–268[PubMed]
    [Google Scholar]
  26. Herrero M., de Lorenzo V., Timmis K. N.. ( 1990;). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol172:6557–6567[PubMed]
    [Google Scholar]
  27. Hinsa S. M., O’Toole G. A.. ( 2006;). Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Microbiology152:1375–1383 [CrossRef][PubMed]
    [Google Scholar]
  28. Hinsa S. M., Espinosa-Urgel M., Ramos J. L., O’Toole G. A.. ( 2003;). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol49:905–918 [CrossRef][PubMed]
    [Google Scholar]
  29. Højberg O., Schnider U., Winteler H. V., Sørensen J., Haas D.. ( 1999;). Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl Environ Microbiol65:4085–4093[PubMed]
    [Google Scholar]
  30. Johnson R. C., Ball C. A., Pfeffer D., Simon M. I.. ( 1988;). Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc Natl Acad Sci U S A85:3484–3488 [CrossRef][PubMed]
    [Google Scholar]
  31. Kelly A., Goldberg M. D., Carroll R. K., Danino V., Hinton J. C., Dorman C. J.. ( 2004;). A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology150:2037–2053 [CrossRef][PubMed]
    [Google Scholar]
  32. Khare E., Singh S., Maheshwari D. K., Arora N. K.. ( 2011;). Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition. Curr Microbiol62:1548–1553 [CrossRef][PubMed]
    [Google Scholar]
  33. Koch B., Jensen L. E., Nybroe O.. ( 2001;). A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods45:187–195 [CrossRef][PubMed]
    [Google Scholar]
  34. Kuchma S. L., Brothers K. M., Merritt J. H., Liberati N. T., Ausubel F. M., O’Toole G. A.. ( 2007;). BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol189:8165–8178 [CrossRef][PubMed]
    [Google Scholar]
  35. Kugelberg E., Löfmark S., Wretlind B., Andersson D. I.. ( 2005;). Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa . J Antimicrob Chemother55:22–30 [CrossRef][PubMed]
    [Google Scholar]
  36. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M.. ( 2006;). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A103:2833–2838 [CrossRef][PubMed]
    [Google Scholar]
  37. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. ( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  38. Lugtenberg B. J., Dekkers L., Bloemberg G. V.. ( 2001;). Molecular determinants of rhizosphere colonization by Pseudomonas . Annu Rev Phytopathol39:461–490 [CrossRef][PubMed]
    [Google Scholar]
  39. Mallik P., Pratt T. S., Beach M. B., Bradley M. D., Undamatla J., Osuna R.. ( 2004;). Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli . J Bacteriol186:122–135 [CrossRef][PubMed]
    [Google Scholar]
  40. Martínez-Antonio A., Collado-Vides J.. ( 2003;). Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol6:482–489 [CrossRef][PubMed]
    [Google Scholar]
  41. Martínez-Granero F., Rivilla R., Martín M.. ( 2006;). Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol72:3429–3434 [CrossRef][PubMed]
    [Google Scholar]
  42. Mathesius U.. ( 2009;). Comparative proteomic studies of root–microbe interactions. J Proteomics72:353–366 [CrossRef][PubMed]
    [Google Scholar]
  43. Matilla M. A., Espinosa-Urgel M., Rodríguez-Herva J. J., Ramos J. L., Ramos-González M. I.. ( 2007;). Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol8:R179 [CrossRef][PubMed]
    [Google Scholar]
  44. Matilla M. A., Travieso M. L., Ramos J. L., Ramos-González M. I.. ( 2011;). Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol13:1745–1766 [CrossRef][PubMed]
    [Google Scholar]
  45. Merritt J. H., Ha D. G., Cowles K. N., Lu W., Morales D. K., Rabinowitz J., Gitai Z., O’Toole G. A.. ( 2010;). Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. MBio1:e00183–e00210[PubMed][CrossRef]
    [Google Scholar]
  46. Micka B., Marahiel M. A.. ( 1992;). The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis . Biochimie74:641–650 [CrossRef][PubMed]
    [Google Scholar]
  47. Mikkelsen H., Sivaneson M., Filloux A.. ( 2011;). Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa . Environ Microbiol13:1666–1681 [CrossRef][PubMed]
    [Google Scholar]
  48. Miller J. H.. ( 1992;). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Morgan J. A., Bending G. D., White P. J.. ( 2005;). Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot56:1729–1739 [CrossRef][PubMed]
    [Google Scholar]
  50. Murashige T., Skoog F.. ( 1962;). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant15:473–497 [CrossRef]
    [Google Scholar]
  51. Navazo A., Barahona E., Redondo-Nieto M., Martínez-Granero F., Rivilla R., Martín M.. ( 2009;). Three independent signalling pathways repress motility in Pseudomonas fluorescens F113. Microb Biotechnol2:489–498 [CrossRef][PubMed]
    [Google Scholar]
  52. Nilsson L., Verbeek H., Vijgenboom E., van Drunen C., Vanet A., Bosch L.. ( 1992;). FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions. J Bacteriol174:921–929[PubMed]
    [Google Scholar]
  53. Ojangu E. L., Tover A., Teras R., Kivisaar M.. ( 2000;). Effects of combination of different −10 hexamers and downstream sequences on stationary-phase-specific sigma factor σS-dependent transcription in Pseudomonas putida . J Bacteriol182:6707–6713 [CrossRef][PubMed]
    [Google Scholar]
  54. Osuna R., Lienau D., Hughes K. T., Johnson R. C.. ( 1995;). Sequence, regulation, and functions of fis in Salmonella typhimurium . J Bacteriol177:2021–2032[PubMed]
    [Google Scholar]
  55. Pandey P., Kang S. C., Gupta C. P., Maheshwari D. K.. ( 2005;). Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr Microbiol51:303–309 [CrossRef][PubMed]
    [Google Scholar]
  56. Pavel H., Forsman M., Shingler V.. ( 1994;). An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. J Bacteriol176:7550–7557[PubMed]
    [Google Scholar]
  57. Petrova O. E., Sauer K.. ( 2009;). A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog5:e1000668 [CrossRef][PubMed]
    [Google Scholar]
  58. Ramos C., Molina L., Mølbak L., Ramos J. L., Molin S.. ( 2000;). A bioluminescent derivative of Pseudomonas putida KT2440 for deliberate release into the environment. FEMS Microbiol Ecol34:91–102 [CrossRef][PubMed]
    [Google Scholar]
  59. Ramos-González M. I., Campos M. J., Ramos J. L.. ( 2005;). Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vitro expression technology capture and identification of root-activated promoters. J Bacteriol187:4033–4041 [CrossRef][PubMed]
    [Google Scholar]
  60. Römling U., Gomelsky M., Galperin M. Y.. ( 2005;). C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol57:629–639 [CrossRef][PubMed]
    [Google Scholar]
  61. Rowland S. J., Boocock M. R., Stark W. M.. ( 2006;). DNA bending in the Sin recombination synapse: functional replacement of HU by IHF. Mol Microbiol59:1730–1743 [CrossRef][PubMed]
    [Google Scholar]
  62. Rudrappa T., Biedrzycki M. L., Bais H. P.. ( 2008;). Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol64:153–166 [CrossRef][PubMed]
    [Google Scholar]
  63. Ryu C. M., Murphy J. F., Mysore K. S., Kloepper J. W.. ( 2004;). Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J39:381–392 [CrossRef][PubMed]
    [Google Scholar]
  64. Santos P. M., Di Bartolo I., Blatny J. M., Zennaro E., Valla S.. ( 2001;). New broad-host-range promoter probe vectors based on the plasmid RK2 replicon. FEMS Microbiol Lett195:91–96 [CrossRef][PubMed]
    [Google Scholar]
  65. Schägger H.. ( 2006;). Tricine-SDS-PAGE. Nat Protoc1:16–22 [CrossRef][PubMed]
    [Google Scholar]
  66. Sharma R. C., Schimke R. T.. ( 1996;). Preparation of electrocompetent E. coli using salt-free growth medium. Biotechniques20:42–44[PubMed]
    [Google Scholar]
  67. Silby M. W., Winstanley C., Godfrey S. A., Levy S. B., Jackson R. W.. ( 2011;). Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev35:652–680 [CrossRef][PubMed]
    [Google Scholar]
  68. Simm R., Morr M., Kader A., Nimtz M., Römling U.. ( 2004;). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol53:1123–1134 [CrossRef][PubMed]
    [Google Scholar]
  69. Stanley N. R., Lazazzera B. A.. ( 2004;). Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol52:917–924 [CrossRef][PubMed]
    [Google Scholar]
  70. Studier F. W., Moffatt B. A.. ( 1986;). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol189:113–130 [CrossRef][PubMed]
    [Google Scholar]
  71. Teras R., Jakovleva J., Kivisaar M.. ( 2009;). Fis negatively affects binding of Tn4652 transposase by out-competing IHF from the left end of Tn4652 . Microbiology155:1203–1214 [CrossRef][PubMed]
    [Google Scholar]
  72. Turner L. R., Lara J. C., Nunn D. N., Lory S.. ( 1993;). Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa . J Bacteriol175:4962–4969
    [Google Scholar]
  73. Ventre I., Goodman A. L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S., Filloux A.. ( 2006;). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A103:171–176 [CrossRef][PubMed]
    [Google Scholar]
  74. Villacieros M., Power B., Sánchez-Contreras M., Lloret J., Oruezabal R. I., Martín M., Fernández-Piñas F., Bonilla I., Whelan C.. & other authors ( 2003;). Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil251:47–54 [CrossRef]
    [Google Scholar]
  75. Yeung A. T., Torfs E. C., Jamshidi F., Bains M., Wiegand I., Hancock R. E., Overhage J.. ( 2009;). Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol191:5592–5602 [CrossRef][PubMed]
    [Google Scholar]
  76. Yuste L., Hervás A. B., Canosa I., Tobes R., Jiménez J. I., Nogales J., Pérez-Pérez M. M., Santero E., Díaz E.. & other authors ( 2006;). Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol8:165–177 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053355-0
Loading
/content/journal/micro/10.1099/mic.0.053355-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error