1887

Abstract

A bio electrochemical cell (BEC) was constructed as a typical two-chamber microbial fuel cell (MFC), except that it was operated under external voltage instead of constant resistance as in an MFC. The anode chamber contained a pure culture of F1 grown in a minimal medium containing toluene as the sole carbon and energy source. Operating the BEC under external voltages of 75, 125, 175, 250 and 500 mV (versus an Ag/AgCl reference electrode) led to increased bacterial cell growth to an OD of 0.62–0.75, while the control BEC, which was not connected to external voltage, reached an OD of only 0.3. Examination of the current generated under external voltages of 75, 125, 175, 250 and 500 mV showed that the maximal currents were 11, 23, 28, 54 and 94 mA m, respectively. Cyclic voltammetry experiments demonstrated an anodic peak at 270 mV, which may imply oxidation of a vital molecule. The average residual toluene concentration after 147 h in the BEC operated under external voltage was 22 %, whereas in the control BEC it was 81 %. Proteome analysis of bacterial cells grown in the BEC (125 mV) revealed two groups of proteins, which are ascribed to charge transfer in the bacterial cells and from the cell to the electrode. In conclusion, operating the BEC at 75–500 mV enabled growth of a pure culture of F1 and toluene degradation even in an oxygen-limited environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053298-0
2012-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/414.html?itemId=/content/journal/micro/10.1099/mic.0.053298-0&mimeType=html&fmt=ahah

References

  1. Afkar E., Reguera G., Schiffer M., Lovley D. R.. ( 2005;). A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. . BMC Microbiol 5:, 41. [CrossRef][PubMed]
    [Google Scholar]
  2. Aislabie J., Foght J., Saul D.. ( 2000;). Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. . Polar Biol 23:, 183–188. [CrossRef]
    [Google Scholar]
  3. Allen R. M., Bennetto H. P.. ( 1993;). Microbial fuel-cells: electricity production from carbohydrates. . Appl Biochem Biotechnol 39:, 27–40. [CrossRef]
    [Google Scholar]
  4. Aronsson K., Rönner U., Borch E.. ( 2005;). Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. . Int J Food Microbiol 99:, 19–32. [CrossRef][PubMed]
    [Google Scholar]
  5. Beliaev A. S., Saffarini D. A., McLaughlin J. L., Hunnicutt D.. ( 2001;). MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. . Mol Microbiol 39:, 722–730. [CrossRef][PubMed]
    [Google Scholar]
  6. Bell A., Hancock R. E. W.. ( 1989;). Outer membrane protein H1 of Pseudomonas aeruginosa: purification of the protein and cloning and nucleotide sequence of the gene. . J Bacteriol 171:, 3211–3217.[PubMed]
    [Google Scholar]
  7. Bond D. R., Lovley D. R.. ( 2003;). Electricity production by Geobacter sulfurreducens attached to electrodes. . Appl Environ Microbiol 69:, 1548–1555. [CrossRef][PubMed]
    [Google Scholar]
  8. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R.. ( 2002;). Electrode-reducing microorganisms that harvest energy from marine sediments. . Science 295:, 483–485. [CrossRef][PubMed]
    [Google Scholar]
  9. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef][PubMed]
    [Google Scholar]
  10. Bretschger O., Obraztsova A., Sturm C. A., Chang I. S., Gorby Y. A., Reed S. B., Culley D. E., Reardon C. L., Barua S.. & other authors ( 2007;). Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. . Appl Environ Microbiol 73:, 7003–7012. [CrossRef][PubMed]
    [Google Scholar]
  11. Chakraborty R., O’Connor S. M., Chan E., Coates J. D.. ( 2005;). Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. . Appl Environ Microbiol 71:, 8649–8655. [CrossRef][PubMed]
    [Google Scholar]
  12. Chaudhuri S. K., Lovley D. R.. ( 2003;). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. . Nat Biotechnol 21:, 1229–1232. [CrossRef][PubMed]
    [Google Scholar]
  13. Chen C. I., Taylor R. T.. ( 1997;). Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. . Appl Microbiol Biotechnol 48:, 121–128. [CrossRef][PubMed]
    [Google Scholar]
  14. Coates J. D., Chakraborty R., Lack J. G., O’Connor S. M., Cole K. A., Bender K. S., Achenbach L. A.. ( 2001;). Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. . Nature 411:, 1039–1043. [CrossRef][PubMed]
    [Google Scholar]
  15. D’Elia L. F., Ortiz R.. ( 2005;). Electrochemical oxidation of toluene on glassy carbon electrodes in organic medium. . Portugaliae Electrochim Acta 23:, 481–490. [CrossRef]
    [Google Scholar]
  16. Desharnais B. M., Lewis B. A.. ( 2002;). Electrochemical water splitting at bipolar interfaces of ion exchange membranes and soils. . Soil Sci Soc Am J 66:, 1518–1525. [CrossRef]
    [Google Scholar]
  17. Dupont M., James C. E., Chevalier J., Pagès J. M.. ( 2007;). An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. . Antimicrob Agents Chemother 51:, 3190–3198. [CrossRef][PubMed]
    [Google Scholar]
  18. Froud R. J., Ragan C. I.. ( 1984;). Cytochrome c-mediated electron transfer between ubiquinol-cytochrome c reductase and cytochrome c oxidase. Kinetic evidence for a mobile cytochrome c pool. . Biochem J 217:, 551–560.[PubMed]
    [Google Scholar]
  19. Gaspard S., Vazquez F., Holliger C.. ( 1998;). Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens. . Appl Environ Microbiol 64:, 3188–3194.[PubMed]
    [Google Scholar]
  20. Gorby Y. A., Yanina S., McLean J. S., Rosso K. M., Moyles D., Dohnalkova A., Beveridge T. J., Chang I. S., Kim B. H.. & other authors ( 2006;). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. . Proc Natl Acad Sci U S A 103:, 11358–11363. [CrossRef][PubMed]
    [Google Scholar]
  21. Haigler B. E., Spain J. C.. ( 1991;). Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. . Appl Environ Microbiol 57:, 3156–3162.[PubMed]
    [Google Scholar]
  22. Hamed J., Acar Y. B., Gale R. J.. ( 1991;). Pb(II) removal from kaolinite by electrokinetics. . J Geotech Eng-ASCE 117:, 241–271. [CrossRef]
    [Google Scholar]
  23. Hernandez M. E., Newman D. K.. ( 2001;). Extracellular electron transfer. . Cell Mol Life Sci 58:, 1562–1571. [CrossRef][PubMed]
    [Google Scholar]
  24. Hong H. D., Patel D. R., Tamm L. K., van den Berg B.. ( 2006;). The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. . J Biol Chem 281:, 7568–7577. [CrossRef][PubMed]
    [Google Scholar]
  25. Hüsken L. E., Beeftink R., de Bont J. A. M., Wery J.. ( 2001;). High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. . Appl Microbiol Biotechnol 55:, 571–577. [CrossRef][PubMed]
    [Google Scholar]
  26. Kim W. S., Kim S. O., Kim K. W.. ( 2005;). Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes. . J Hazard Mater 118:, 93–102. [CrossRef][PubMed]
    [Google Scholar]
  27. Kim B. C., Postier B. L., Didonato R. J., Chaudhuri S. K., Nevin K. P., Lovley D. R.. ( 2008;). Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. . Bioelectrochemistry 73:, 70–75. [CrossRef][PubMed]
    [Google Scholar]
  28. Koebnik R., Locher K. P., Van Gelder P.. ( 2000;). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. . Mol Microbiol 37:, 239–253. [CrossRef][PubMed]
    [Google Scholar]
  29. LeDuc D. L., Terry N.. ( 2005;). Phytoremediation of toxic trace elements in soil and water. . J Ind Microbiol Biotechnol 32:, 514–520. [CrossRef][PubMed]
    [Google Scholar]
  30. Lloyd J. R., Leang C., Hodges Myerson A. L., Coppi M. V., Cuifo S., Methe B., Sandler S. J., Lovley D. R.. ( 2003;). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. . Biochem J 369:, 153–161. [CrossRef][PubMed]
    [Google Scholar]
  31. Myers C. R., Myers J. M.. ( 2002;). MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. . Appl Environ Microbiol 68:, 5585–5594. [CrossRef][PubMed]
    [Google Scholar]
  32. Owsianiak M., Szulc A., Chrzanowski L., Cyplik P., Bogacki M., Olejnik-Schmidt A. K., Heipieper H. J.. ( 2009;). Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. . Appl Microbiol Biotechnol 84:, 545–553. [CrossRef][PubMed]
    [Google Scholar]
  33. Pandey J., Chauhan A., Jain R. K.. ( 2009;). Integrative approaches for assessing the ecological sustainability of in situ bioremediation. . FEMS Microbiol Rev 33:, 324–375. [CrossRef][PubMed]
    [Google Scholar]
  34. Pazos M., Sanromán M. A., Cameselle C.. ( 2006;). Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. . Chemosphere 62:, 817–822. [CrossRef]
    [Google Scholar]
  35. Pham T. H., Boon N., Aelterman P., Clauwaert P., De Schamphelaire L., Vanhaecke L., De Maeyer K., Höfte M., Verstraete W., Rabaey K.. ( 2008;). Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. . Appl Microbiol Biotechnol 77:, 1119–1129. [CrossRef][PubMed]
    [Google Scholar]
  36. Pitcher R. S., Watmough N. J.. ( 2004;). The bacterial cytochrome cbb3 oxidases. . Biochem Biophys Acta-Bioenergetics 1655:, 388–399. [CrossRef]
    [Google Scholar]
  37. Reddy K. R., Cameselle C.. ( 2009;). Electrochemical Remediation Technologies for Polluted Soil, Sediments and Groundwater. Hoboken, NJ:: John Wiley & Sons;. [CrossRef]
    [Google Scholar]
  38. Schoenbach K. H., Joshi R. P., Stark R. H., Dobbs F. C., Beebe S. J.. ( 2000;). Bacterial decontamination of liquids with pulsed electric fields. . IEEE T Dielect El In 7:, 637–645. [CrossRef]
    [Google Scholar]
  39. Schröder U.. ( 2007;). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. . Phys Chem Chem Phys 9:, 2619–2629. [CrossRef][PubMed]
    [Google Scholar]
  40. Schwartz D. T., Buehler M. F., Christiansen D. X., Davis E. J.. ( 1997;). In-situ monitoring of electrochemical transport processes in Hanford Grout Vault Soil. . J Hazard Mater 55:, 23–37. [CrossRef]
    [Google Scholar]
  41. Strycharz S. M., Gannon S. M., Boles A. R., Franks A. E., Nevin K. P., Lovley D. R.. ( 2010;). Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. . Environmental Microbiology Reports 2:, 289–294. [CrossRef]
    [Google Scholar]
  42. Vidali M.. ( 2001;). Bioremediation. An overview. . Pure Appl Chem 73:, 1163–1172. [CrossRef]
    [Google Scholar]
  43. Wick L. Y., Shi L., Harms H.. ( 2007;). Electro-bioremediation of hydrophobic organic soil-contaminants: a review of fundamental interactions. . Electrochim Acta 52:, 3441–3448. [CrossRef]
    [Google Scholar]
  44. Wingard L. B. Jr, Shaw C. H., Castner J. F.. ( 1982;). Bioelectrochemical fuel cells. . Enzyme Microb Technol 4:, 137–142. [CrossRef]
    [Google Scholar]
  45. Yeung A. T., Hsu C., Menon R. M.. ( 1997;). Physicochemical soil-contaminant interactions during electrokinetic extraction. . J Hazard Mater 55:, 221–237. [CrossRef]
    [Google Scholar]
  46. Zeng C. C., Liu F. J., Ping D. W., Cai Y. L., Zhong R. G., Becker J. Y.. ( 2009;). Electrochemical oxidation of catechols in the presence of 4-amino-3-methyl-5-mercapto-1,2,4-triazole bearing two nucleophilic groups. . J Electroanal Chem 625:, 131–137. [CrossRef]
    [Google Scholar]
  47. Zhang T., Gannon S. M., Nevin K. P., Franks A. E., Lovley D. R.. ( 2010;). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. . Environ Microbiol 12:, 1011–1020. [CrossRef][PubMed]
    [Google Scholar]
  48. Zylstra G. J., Gibson D. T.. ( 1989;). Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. . J Biol Chem 264:, 14940–14946.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053298-0
Loading
/content/journal/micro/10.1099/mic.0.053298-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error