1887

Abstract

A bio electrochemical cell (BEC) was constructed as a typical two-chamber microbial fuel cell (MFC), except that it was operated under external voltage instead of constant resistance as in an MFC. The anode chamber contained a pure culture of F1 grown in a minimal medium containing toluene as the sole carbon and energy source. Operating the BEC under external voltages of 75, 125, 175, 250 and 500 mV (versus an Ag/AgCl reference electrode) led to increased bacterial cell growth to an OD of 0.62–0.75, while the control BEC, which was not connected to external voltage, reached an OD of only 0.3. Examination of the current generated under external voltages of 75, 125, 175, 250 and 500 mV showed that the maximal currents were 11, 23, 28, 54 and 94 mA m, respectively. Cyclic voltammetry experiments demonstrated an anodic peak at 270 mV, which may imply oxidation of a vital molecule. The average residual toluene concentration after 147 h in the BEC operated under external voltage was 22 %, whereas in the control BEC it was 81 %. Proteome analysis of bacterial cells grown in the BEC (125 mV) revealed two groups of proteins, which are ascribed to charge transfer in the bacterial cells and from the cell to the electrode. In conclusion, operating the BEC at 75–500 mV enabled growth of a pure culture of F1 and toluene degradation even in an oxygen-limited environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053298-0
2012-02-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/414.html?itemId=/content/journal/micro/10.1099/mic.0.053298-0&mimeType=html&fmt=ahah

References

  1. Afkar E., Reguera G., Schiffer M., Lovley D. R.. ( 2005;). A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. BMC Microbiol5:41 [CrossRef][PubMed]
    [Google Scholar]
  2. Aislabie J., Foght J., Saul D.. ( 2000;). Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol23:183–188 [CrossRef]
    [Google Scholar]
  3. Allen R. M., Bennetto H. P.. ( 1993;). Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotechnol39:27–40 [CrossRef]
    [Google Scholar]
  4. Aronsson K., Rönner U., Borch E.. ( 2005;). Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int J Food Microbiol99:19–32 [CrossRef][PubMed]
    [Google Scholar]
  5. Beliaev A. S., Saffarini D. A., McLaughlin J. L., Hunnicutt D.. ( 2001;). MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol39:722–730 [CrossRef][PubMed]
    [Google Scholar]
  6. Bell A., Hancock R. E. W.. ( 1989;). Outer membrane protein H1 of Pseudomonas aeruginosa: purification of the protein and cloning and nucleotide sequence of the gene. J Bacteriol171:3211–3217[PubMed]
    [Google Scholar]
  7. Bond D. R., Lovley D. R.. ( 2003;). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol69:1548–1555 [CrossRef][PubMed]
    [Google Scholar]
  8. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R.. ( 2002;). Electrode-reducing microorganisms that harvest energy from marine sediments. Science295:483–485 [CrossRef][PubMed]
    [Google Scholar]
  9. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  10. Bretschger O., Obraztsova A., Sturm C. A., Chang I. S., Gorby Y. A., Reed S. B., Culley D. E., Reardon C. L., Barua S.. & other authors ( 2007;). Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol73:7003–7012 [CrossRef][PubMed]
    [Google Scholar]
  11. Chakraborty R., O’Connor S. M., Chan E., Coates J. D.. ( 2005;). Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microbiol71:8649–8655 [CrossRef][PubMed]
    [Google Scholar]
  12. Chaudhuri S. K., Lovley D. R.. ( 2003;). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol21:1229–1232 [CrossRef][PubMed]
    [Google Scholar]
  13. Chen C. I., Taylor R. T.. ( 1997;). Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl Microbiol Biotechnol48:121–128 [CrossRef][PubMed]
    [Google Scholar]
  14. Coates J. D., Chakraborty R., Lack J. G., O’Connor S. M., Cole K. A., Bender K. S., Achenbach L. A.. ( 2001;). Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature411:1039–1043 [CrossRef][PubMed]
    [Google Scholar]
  15. D’Elia L. F., Ortiz R.. ( 2005;). Electrochemical oxidation of toluene on glassy carbon electrodes in organic medium. Portugaliae Electrochim Acta23:481–490 [CrossRef]
    [Google Scholar]
  16. Desharnais B. M., Lewis B. A.. ( 2002;). Electrochemical water splitting at bipolar interfaces of ion exchange membranes and soils. Soil Sci Soc Am J66:1518–1525 [CrossRef]
    [Google Scholar]
  17. Dupont M., James C. E., Chevalier J., Pagès J. M.. ( 2007;). An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother51:3190–3198 [CrossRef][PubMed]
    [Google Scholar]
  18. Froud R. J., Ragan C. I.. ( 1984;). Cytochrome c-mediated electron transfer between ubiquinol-cytochrome c reductase and cytochrome c oxidase. Kinetic evidence for a mobile cytochrome c pool. Biochem J217:551–560[PubMed]
    [Google Scholar]
  19. Gaspard S., Vazquez F., Holliger C.. ( 1998;). Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens. Appl Environ Microbiol64:3188–3194[PubMed]
    [Google Scholar]
  20. Gorby Y. A., Yanina S., McLean J. S., Rosso K. M., Moyles D., Dohnalkova A., Beveridge T. J., Chang I. S., Kim B. H.. & other authors ( 2006;). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A103:11358–11363 [CrossRef][PubMed]
    [Google Scholar]
  21. Haigler B. E., Spain J. C.. ( 1991;). Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Appl Environ Microbiol57:3156–3162[PubMed]
    [Google Scholar]
  22. Hamed J., Acar Y. B., Gale R. J.. ( 1991;). Pb(II) removal from kaolinite by electrokinetics. J Geotech Eng-ASCE117:241–271 [CrossRef]
    [Google Scholar]
  23. Hernandez M. E., Newman D. K.. ( 2001;). Extracellular electron transfer. Cell Mol Life Sci58:1562–1571 [CrossRef][PubMed]
    [Google Scholar]
  24. Hong H. D., Patel D. R., Tamm L. K., van den Berg B.. ( 2006;). The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem281:7568–7577 [CrossRef][PubMed]
    [Google Scholar]
  25. Hüsken L. E., Beeftink R., de Bont J. A. M., Wery J.. ( 2001;). High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol55:571–577 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim W. S., Kim S. O., Kim K. W.. ( 2005;). Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes. J Hazard Mater118:93–102 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim B. C., Postier B. L., Didonato R. J., Chaudhuri S. K., Nevin K. P., Lovley D. R.. ( 2008;). Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry73:70–75 [CrossRef][PubMed]
    [Google Scholar]
  28. Koebnik R., Locher K. P., Van Gelder P.. ( 2000;). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol37:239–253 [CrossRef][PubMed]
    [Google Scholar]
  29. LeDuc D. L., Terry N.. ( 2005;). Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol32:514–520 [CrossRef][PubMed]
    [Google Scholar]
  30. Lloyd J. R., Leang C., Hodges Myerson A. L., Coppi M. V., Cuifo S., Methe B., Sandler S. J., Lovley D. R.. ( 2003;). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J369:153–161 [CrossRef][PubMed]
    [Google Scholar]
  31. Myers C. R., Myers J. M.. ( 2002;). MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl Environ Microbiol68:5585–5594 [CrossRef][PubMed]
    [Google Scholar]
  32. Owsianiak M., Szulc A., Chrzanowski L., Cyplik P., Bogacki M., Olejnik-Schmidt A. K., Heipieper H. J.. ( 2009;). Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Appl Microbiol Biotechnol84:545–553 [CrossRef][PubMed]
    [Google Scholar]
  33. Pandey J., Chauhan A., Jain R. K.. ( 2009;). Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev33:324–375 [CrossRef][PubMed]
    [Google Scholar]
  34. Pazos M., Sanromán M. A., Cameselle C.. ( 2006;). Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere62:817–822
    [Google Scholar]
  35. Pham T. H., Boon N., Aelterman P., Clauwaert P., De Schamphelaire L., Vanhaecke L., De Maeyer K., Höfte M., Verstraete W., Rabaey K.. ( 2008;). Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol77:1119–1129 [CrossRef][PubMed]
    [Google Scholar]
  36. Pitcher R. S., Watmough N. J.. ( 2004;). The bacterial cytochrome cbb 3 oxidases. Biochem Biophys Acta-Bioenergetics1655:388–399 [CrossRef]
    [Google Scholar]
  37. Reddy K. R., Cameselle C.. ( 2009;). Electrochemical Remediation Technologies for Polluted Soil, Sediments and Groundwater Hoboken, NJ: John Wiley & Sons; [CrossRef]
    [Google Scholar]
  38. Schoenbach K. H., Joshi R. P., Stark R. H., Dobbs F. C., Beebe S. J.. ( 2000;). Bacterial decontamination of liquids with pulsed electric fields. IEEE T Dielect El In7:637–645 [CrossRef]
    [Google Scholar]
  39. Schröder U.. ( 2007;). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys9:2619–2629 [CrossRef][PubMed]
    [Google Scholar]
  40. Schwartz D. T., Buehler M. F., Christiansen D. X., Davis E. J.. ( 1997;). In-situ monitoring of electrochemical transport processes in Hanford Grout Vault Soil. J Hazard Mater55:23–37 [CrossRef]
    [Google Scholar]
  41. Strycharz S. M., Gannon S. M., Boles A. R., Franks A. E., Nevin K. P., Lovley D. R.. ( 2010;). Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environmental Microbiology Reports2:289–294 [CrossRef]
    [Google Scholar]
  42. Vidali M.. ( 2001;). Bioremediation. An overview. Pure Appl Chem73:1163–1172 [CrossRef]
    [Google Scholar]
  43. Wick L. Y., Shi L., Harms H.. ( 2007;). Electro-bioremediation of hydrophobic organic soil-contaminants: a review of fundamental interactions. Electrochim Acta52:3441–3448 [CrossRef]
    [Google Scholar]
  44. Wingard L. B. Jr, Shaw C. H., Castner J. F.. ( 1982;). Bioelectrochemical fuel cells. Enzyme Microb Technol4:137–142 [CrossRef]
    [Google Scholar]
  45. Yeung A. T., Hsu C., Menon R. M.. ( 1997;). Physicochemical soil-contaminant interactions during electrokinetic extraction. J Hazard Mater55:221–237 [CrossRef]
    [Google Scholar]
  46. Zeng C. C., Liu F. J., Ping D. W., Cai Y. L., Zhong R. G., Becker J. Y.. ( 2009;). Electrochemical oxidation of catechols in the presence of 4-amino-3-methyl-5-mercapto-1,2,4-triazole bearing two nucleophilic groups. J Electroanal Chem625:131–137 [CrossRef]
    [Google Scholar]
  47. Zhang T., Gannon S. M., Nevin K. P., Franks A. E., Lovley D. R.. ( 2010;). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol12:1011–1020 [CrossRef][PubMed]
    [Google Scholar]
  48. Zylstra G. J., Gibson D. T.. ( 1989;). Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem264:14940–14946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053298-0
Loading
/content/journal/micro/10.1099/mic.0.053298-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error