1887

Abstract

Infections caused by multiresistant Gram-positive bacteria represent a major health burden in the community as well as in hospitalized patients. Enterococci, especially are well-known pathogens of hospitalized patients and are frequently linked with resistance against multiple antibiotics, which compromises effective therapy. Rabbit immune serum raised against heat-killed E155, a HiRECC clone, was used in an opsonophagocytic assay, an inhibition assay and a mouse bacteraemia model to identify targets of opsonic and protective antibodies. Serum against whole heat-killed bacteria was opsonic and recognized a protein of about 72 kDa that was abundantly secreted. This protein, identified as SagA by LC-ES-MS/MS, was expressed in and purified. Rabbit serum raised against the purified protein showed opsonic killing activity that was inhibited by almost 100 % using 100 µg purified protein ml. In a mouse bacteraemia model, a statistically significant reduction of the colony counts in blood was shown with immune rabbit serum compared with preimmune serum using the homologous and a heterologous vancomycin-resistant enterococci (VRE) strain. These results indicate that SagA could be used as a promising vaccine target to treat and/or prevent VRE bacteraemia.

Funding
This study was supported by the:
  • European Union Sixth Framework Program (Award LSHE-CT-2007-037410)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053207-0
2011-12-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3429.html?itemId=/content/journal/micro/10.1099/mic.0.053207-0&mimeType=html&fmt=ahah

References

  1. Anantharaman V., Aravind L. ( 2003). Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol 4:R11 [View Article][PubMed]
    [Google Scholar]
  2. Arias C. A., Murray B. E. ( 2009). Antibiotic-resistant bugs in the 21st century – a clinical super-challenge. N Engl J Med 360:439–443 [View Article][PubMed]
    [Google Scholar]
  3. Arias C. A., Contreras G. A., Murray B. E. ( 2010). Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 16:555–562 [View Article][PubMed]
    [Google Scholar]
  4. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. ( 1984). A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136:175–179 [View Article][PubMed]
    [Google Scholar]
  5. Breton Y. L., Mazé A., Hartke A., Lemarinier S., Auffray Y., Rincé A. ( 2002). Isolation and characterization of bile salts-sensitive mutants of Enterococcus faecalis . Curr Microbiol 45:434–439[PubMed] [CrossRef]
    [Google Scholar]
  6. Bubert A., Kuhn M., Goebel W., Köhler S. ( 1992). Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol 174:8166–8171[PubMed]
    [Google Scholar]
  7. Butler A. M., Olsen M. A., Merz L. R., Guth R. M., Woeltje K. F., Camins B. C., Fraser V. J. ( 2010). Attributable costs of enterococcal bloodstream infections in a nonsurgical hospital cohort. Infect Control Hosp Epidemiol 31:28–35 [View Article][PubMed]
    [Google Scholar]
  8. Chia J.-S., Chang L. Y., Shun C.-T., Chang Y.-Y., Tsay Y. G., Chen J. Y. ( 2001). A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans . Infect Immun 69:6987–6998 [View Article][PubMed]
    [Google Scholar]
  9. Heikens E., Bonten M. J. M., Willems R. J. L. ( 2007). Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol 189:8233–8240 [View Article][PubMed]
    [Google Scholar]
  10. Herrero I. A., Issa N. C., Patel R. ( 2002). Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium . N Engl J Med 346:867–869 [View Article][PubMed]
    [Google Scholar]
  11. Huebner J., Wang Y., Krueger W. A., Madoff L. C., Martirosian G., Boisot S., Goldmann D. A., Kasper D. L., Tzianabos A. O., Pier G. B. ( 1999). Isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium . Infect Immun 67:1213–1219[PubMed]
    [Google Scholar]
  12. Huebner J., Quaas A., Krueger W. A., Goldmann D. A., Pier G. B. ( 2000). Prophylactic and therapeutic efficacy of antibodies to a capsular polysaccharide shared among vancomycin-sensitive and -resistant enterococci. Infect Immun 68:4631–4636 [View Article][PubMed]
    [Google Scholar]
  13. Koch S., Hufnagel M., Huebner J. ( 2004). Treatment and prevention of enterococcal infections – alternative and experimental approaches. Expert Opin Biol Ther 4:1519–1531 [View Article][PubMed]
    [Google Scholar]
  14. Le Breton Y., Boël G., Benachour A., Prévost H., Auffray Y., Rincé A. ( 2003). Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 5:329–337 [View Article][PubMed]
    [Google Scholar]
  15. Leavis H. L., Willems R. J. L., van Wamel W. J. B., Schuren F. H., Caspers M. P. M., Bonten M. J. M. ( 2007). Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium . PLoS Pathog 3:e7 [View Article][PubMed]
    [Google Scholar]
  16. Maira-Litrán T., Kropec A., Abeygunawardana C., Joyce J., Mark G. III, Goldmann D. A., Pier G. B. ( 2002). Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440 [View Article][PubMed]
    [Google Scholar]
  17. Mohamed J. A., Teng F., Nallapareddy S. R., Murray B. E. ( 2006). Pleiotropic effects of 2 Enterococcus faecalis sagA-like genes, salA and salB, which encode proteins that are antigenic during human infection, on biofilm formation and binding to collagen type i and fibronectin. J Infect Dis 193:231–240 [View Article][PubMed]
    [Google Scholar]
  18. Rigden D. J., Jedrzejas M. J., Galperin M. Y. ( 2003). Amidase domains from bacterial and phage autolysins define a family of gamma-d,l-glutamate-specific amidohydrolases. Trends Biochem Sci 28:230–234 [View Article][PubMed]
    [Google Scholar]
  19. Sambrook J., Russell D. W. ( 2001). Molecular Cloning, a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Sava I. G., Heikens E., Kropec A., Theilacker C., Willems R., Huebner J. ( 2010). Enterococcal surface protein contributes to persistence in the host but is not a target of opsonic and protective antibodies in Enterococcus faecium infection. J Med Microbiol 59:1001–1004 [View Article][PubMed]
    [Google Scholar]
  21. Schubert K., Bichlmaier A. M., Mager E., Wolff K., Ruhland G., Fiedler F. ( 2000). P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity. Arch Microbiol 173:21–28 [View Article][PubMed]
    [Google Scholar]
  22. Schwartz B. S., Ngo P. D., Guglielmo B. J. ( 2008). Daptomycin treatment failure for vancomycin-resistant Enterococcus faecium infective endocarditis: impact of protein binding?. Ann Pharmacother 42:289–290 [View Article][PubMed]
    [Google Scholar]
  23. Singh K. V., Nallapareddy S. R., Sillanpää J., Murray B. E. ( 2010). Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog 6:e1000716 [View Article][PubMed]
    [Google Scholar]
  24. Teng F., Kawalec M., Weinstock G. M., Hryniewicz W., Murray B. E. ( 2003). An Enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium growth. Infect Immun 71:5033–5041 [View Article][PubMed]
    [Google Scholar]
  25. Theilacker C., Krueger W. A., Kropec A., Huebner J. ( 2004). Rationale for the development of immunotherapy regimens against enterococcal infections. Vaccine 22:Suppl. 1S31–S38 [View Article][PubMed]
    [Google Scholar]
  26. Theilacker C., Kaczynski Z., Kropec A., Fabretti F., Sange T., Holst O., Huebner J. ( 2006). Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 74:5703–5712 [View Article][PubMed]
    [Google Scholar]
  27. Theilacker C., Jonas D., Huebner J., Bertz H., Kern W. V. ( 2009a). Outcomes of invasive infection due to vancomycin-resistant Enterococcus faecium during a recent outbreak. Infection 37:540–543 [View Article][PubMed]
    [Google Scholar]
  28. Theilacker C., Sanchez-Carballo P., Toma I., Fabretti F., Sava I., Kropec A., Holst O., Huebner J. ( 2009b). Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis . Mol Microbiol 71:1055–1069 [View Article][PubMed]
    [Google Scholar]
  29. Theilacker C., Kaczyński Z., Kropec A., Sava I., Ye L., Bychowska A., Holst O., Huebner J. ( 2011). Serodiversity of opsonic antibodies against Enterococcus faecalis – glycans of the cell wall revisited. PLoS ONE 6:e17839 [View Article][PubMed]
    [Google Scholar]
  30. Top J., Willems R. J. L., van der Velden S., Asbroek M., Bonten M. ( 2008). Emergence of clonal complex 17 Enterococcus faecium in The Netherlands. J Clin Microbiol 46:214–219 [View Article][PubMed]
    [Google Scholar]
  31. Willems R. J. L., Top J., van Santen M., Robinson D. A., Coque T. M., Baquero F., Grundmann H., Bonten M. J. M. ( 2005). Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11:821–828[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053207-0
Loading
/content/journal/micro/10.1099/mic.0.053207-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error