1887

Abstract

The gene encodes a cysteine-rich cell wall protein that has an important role in adherence to hydrophobic surfaces and cellular protection; this gene was upregulated in high-density oligonucleotide (HDO) microarrays in interaction with tomato roots. Using a collection of -overexpressing and disrupted mutants the role of this gene in cucumber and tomato root architecture was analysed in hydroponic and soil systems under greenhouse conditions. No significant differences were found in the pattern of root colonization and the length of primary roots of cucumber or tomato plants inoculated by CECT 2413 wild-type (wt) strain or any of the transformants. However, compared to the wt treatment, lateral roots were significantly longer in plants inoculated with the overexpressing transformants, and shorter in those treated with the disruptant strains. Microscopic observations revealed more and longer secondary root hairs in cucumber plants treated with the -overexpressing mutants and fewer and shorter hairs in roots treated with -disrupted transformants, compared to those observed in plants inoculated with the wt strain. -induced modifications in root architecture increased the total absorptive surface, facilitating nutrient uptake and translocation of nutrients in the shoots, resulting in increased plant biomass through an efficient use of NPK and micronutrients.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053140-0
2012-01-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/129.html?itemId=/content/journal/micro/10.1099/mic.0.053140-0&mimeType=html&fmt=ahah

References

  1. Altomare C., Norvell W. A., Björkman T., Harman G. E.. ( 1999;). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol65:2926–2933[PubMed]
    [Google Scholar]
  2. Askolin S., Penttilä M., Wösten H. A., Nakari-Setälä T.. ( 2005;). The Trichoderma reesei hydrophobin genes hfb1 and hfb2 have diverse functions in fungal development. FEMS Microbiol Lett253:281–288 [CrossRef][PubMed]
    [Google Scholar]
  3. Carapito R., Hatsch D., Vorwerk S., Petkovski E., Jeltsch J.-M., Phalip V.. ( 2008;). Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genet Biol45:738–748 [CrossRef][PubMed]
    [Google Scholar]
  4. Cardoza R. E., Vizcaíno J. A., Hermosa M. R., Monte E., Gutiérrez S.. ( 2006;). A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. J Microbiol44:383–395[PubMed]
    [Google Scholar]
  5. Chacón M. R., Rodríguez-Galán O., Benítez T., Sousa S., Rey M., Llobell A., Delgado-Jarana J.. ( 2007;). Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum . Int Microbiol10:19–27[PubMed]
    [Google Scholar]
  6. Contreras-Cornejo H. A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J.. ( 2009;). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis . Plant Physiol149:1579–1592 [CrossRef][PubMed]
    [Google Scholar]
  7. Dellaporta S. L., Wood J., Hicks J. B.. ( 1983;). A plant DNA minipreparation: version II. Plant Mol Biol Rep1:19–21 [CrossRef]
    [Google Scholar]
  8. Djonović S., Pozo M. J., Dangott L. J., Howell C. R., Kenerley C. M.. ( 2006;). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact19:838–853 [CrossRef][PubMed]
    [Google Scholar]
  9. Donoso E. P., Bustamante R. O., Carú M., Niemeyer H. M.. ( 2008;). Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl Environ Microbiol74:1412–1417 [CrossRef][PubMed]
    [Google Scholar]
  10. Gage D. J.. ( 2004;). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev68:280–300 [CrossRef][PubMed]
    [Google Scholar]
  11. Harman G. E.. ( 2000;). Myths and dogmas of biocontrol – changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis84:377–393 [CrossRef]
    [Google Scholar]
  12. Harman G. E.. ( 2011;). Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol189:647–649 [CrossRef][PubMed]
    [Google Scholar]
  13. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M.. ( 2004a;). Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol2:43–56 [CrossRef][PubMed]
    [Google Scholar]
  14. Harman G. E., Petzoldt R., Comis A., Chen J.. ( 2004b;). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola . Phytopathology94:147–153 [CrossRef][PubMed]
    [Google Scholar]
  15. Hoagland D. R., Arnon D. I.. ( 1950;). The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ347:1–32
    [Google Scholar]
  16. Knight M. R.. ( 2007;). New ideas on root hair growth appear from the flanks. Proc Natl Acad Sci U S A104:20649–20650 [CrossRef][PubMed]
    [Google Scholar]
  17. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A.. & other authors ( 2011;). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma . Genome Biol12:R40 [CrossRef][PubMed]
    [Google Scholar]
  18. Linder M. B., Szilvay G. R., Nakari-Setälä T., Penttilä M. E.. ( 2005;). Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev29:877–896 [CrossRef][PubMed]
    [Google Scholar]
  19. López-Bucio J., Cruz-Ramírez A., Herrera-Estrella L.. ( 2003;). The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol6:280–287 [CrossRef][PubMed]
    [Google Scholar]
  20. Lorito M., Woo S. L., Harman G. E., Monte E.. ( 2010;). Translational research on Trichoderma: from ’omics to the field. Annu Rev Phytopathol48:395–417 [CrossRef][PubMed]
    [Google Scholar]
  21. Mastouri F., Björkman T., Harman G. E.. ( 2010;). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology100:1213–1221 [CrossRef][PubMed]
    [Google Scholar]
  22. Mendoza-Mendoza A., Rosales-Saavedra T., Cortés C., Castellanos-Juárez V., Martínez P., Herrera-Estrella A.. ( 2007;). The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens . Microbiology153:2137–2147 [CrossRef][PubMed]
    [Google Scholar]
  23. Monshausen G. B., Bibikova T. N., Messerli M. A., Shi C., Gilroy S.. ( 2007;). Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci U S A104:20996–21001 [CrossRef][PubMed]
    [Google Scholar]
  24. Montero-Barrientos M., Hermosa R., Cardoza R. E., Gutiérrez S., Monte E.. ( 2011;). Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum . Appl Environ Microbiol77:3009–3016 [CrossRef][PubMed]
    [Google Scholar]
  25. Muñoz G., Nakari-Setälä T., Agosin E., Penttilä M.. ( 1997;). Hydrophobin gene srh1, expressed during sporulation of the biocontrol agent Trichoderma harzianum . Curr Genet32:225–230 [CrossRef][PubMed]
    [Google Scholar]
  26. Okon Y., Chet I., Henis Y.. ( 1973;). Effect of lactose, ethanol and cycloheximide on the translocation pattern of radioactive compounds and on sclerotium formation in Sclerotium rolfsii . J Gen Microbiol74:251–258[CrossRef]
    [Google Scholar]
  27. Prieto P., Schilirò E., Maldonado-González M. M., Valderrama R., Barroso-Albarracín J. B., Mercado-Blanco J.. ( 2011;). Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol62:435–445 [CrossRef][PubMed]
    [Google Scholar]
  28. Punt P. J., Oliver R. P., Dingemanse M. A., Pouwels P. H., van den Hondel C. A.. ( 1987;). Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli . Gene56:117–124 [CrossRef][PubMed]
    [Google Scholar]
  29. Rey M., Ohno S., Pintor-Toro J. A., Llobell A., Benítez T.. ( 1998;). Unexpected homology between inducible cell wall protein QID74 of filamentous fungi and BR3 salivary protein of the insect Chironomus . Proc Natl Acad Sci U S A95:6212–6216 [CrossRef][PubMed]
    [Google Scholar]
  30. Ribaudo C. M., Krumpholz E. M., Cassán F. D., Bottini R., Cantore M. L., Curá J. A.. ( 2006;). Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul25:175–185 [CrossRef]
    [Google Scholar]
  31. Richardson A. E., Barea J.-M., McNeill A. M., Prigent-Combaret C.. ( 2009;). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil321:305–339 [CrossRef]
    [Google Scholar]
  32. Rosado I. V., Rey M., Codón A. C., Govantes J., Moreno-Mateos M. A., Benítez T.. ( 2007;). QID74 cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol44:950–964 [CrossRef][PubMed]
    [Google Scholar]
  33. Rubio M. B., Hermosa M. R., Keck E., Monte E.. ( 2005;). Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb Ecol49:25–33 [CrossRef][PubMed]
    [Google Scholar]
  34. Samolski I., de Luis A., Vizcaíno J. A., Monte E., Suárez M. B.. ( 2009;). Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol9:217 [CrossRef][PubMed]
    [Google Scholar]
  35. Seidl V., Marchetti M., Schandl R., Allmaier G., Kubicek C. P.. ( 2006;). Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J273:4346–4359 [CrossRef][PubMed]
    [Google Scholar]
  36. Shoresh M., Harman G. E., Mastouri F.. ( 2010;). Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol48:21–43 [CrossRef][PubMed]
    [Google Scholar]
  37. Suárez M. B., Walsh K., Boonham N., O’Neill T., Pearson S., Barker I.. ( 2005;). Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol Biochem43:890–899 [CrossRef][PubMed]
    [Google Scholar]
  38. Tucci M., Ruocco M., De Masi L., De Palma M., Lorito M.. ( 2011;). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol12:341–354 [CrossRef][PubMed]
    [Google Scholar]
  39. Viterbo A., Chet I.. ( 2006;). TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol7:249–258 [CrossRef][PubMed]
    [Google Scholar]
  40. Whiteford J. R., Spanu P. D.. ( 2002;). Hydrophobins and the interactions between fungi and plants. Mol Plant Pathol3:391–400 [CrossRef][PubMed]
    [Google Scholar]
  41. Yedidia I., Benhamou N., Chet I.. ( 1999;). Induction of defense responses in cucumber plants (Cucumis sativus L. ) by the biocontrol agent Trichoderma harzianum . Appl Environ Microbiol65:1061–1070[PubMed]
    [Google Scholar]
  42. Yedidia I., Benhamou N., Kapulnik Y., Chet I.. ( 2000;). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem38:863–873 [CrossRef]
    [Google Scholar]
  43. Yedidia I., Srivastva A. K., Kapulnik Y., Chet I.. ( 2001;). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil235:235–242 [CrossRef]
    [Google Scholar]
  44. Zeilinger S., Galhaup C., Payer K., Woo S. L., Mach R. L., Fekete C., Lorito M., Kubicek C. P.. ( 1999;). Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol26:131–140 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053140-0
Loading
/content/journal/micro/10.1099/mic.0.053140-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error