1887

Abstract

() is an efficient cell factory for protein production that is exploited by the enzyme industry. Yields of over 100 g secreted protein l from industrial fermentations have been reported. In this review we discuss the spectrum of proteins secreted by and the studies carried out on its protein secretion system. The major enzymes secreted by under production conditions are those degrading plant polysaccharides, the most dominant ones being the major cellulases, as demonstrated by the 2D gel analysis of the secretome. According to genome analysis, has fewer genes encoding enzymes involved in plant biomass degradation compared with other fungi with sequenced genomes. We also discuss other secreted enzymes and proteins that have been studied, such as proteases, laccase, tyrosinase and hydrophobins. Investigation of the secretion pathway has included molecular characterization of the pathway components functioning at different stages of the secretion process as well as analysis of the stress responses caused by impaired folding or trafficking in the pathway or by expression of heterologous proteins. Studies on the transcriptional regulation of the secretory pathway have revealed similarities, but also interesting differences, with other organisms, such as a different induction mechanism of the unfolded protein response and the repression of genes encoding secreted proteins under secretion stress conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053132-0
2012-01-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/46.html?itemId=/content/journal/micro/10.1099/mic.0.053132-0&mimeType=html&fmt=ahah

References

  1. Aalto M. K., Ronne H., Keränen S.. ( 1993;). Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J12:4095–4104[PubMed]
    [Google Scholar]
  2. Al-Sheikh H., Watson A. J., Lacey G. A., Punt P. J., MacKenzie D. A., Jeenes D. J., Pakula T., Penttilä M., Alcocer M. J. C., Archer D. B.. ( 2004;). Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol Microbiol53:1731–1742 [CrossRef][PubMed]
    [Google Scholar]
  3. Aro N., Pakula T., Penttilä M.. ( 2005;). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev29:719–739 [CrossRef][PubMed]
    [Google Scholar]
  4. Arvas M., Pakula T., Lanthaler K., Saloheimo M., Valkonen M., Suortti T., Robson G., Penttilä M.. ( 2006;). Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics7:32 [CrossRef][PubMed]
    [Google Scholar]
  5. Askolin S., Penttilä M., Wösten H. A., Nakari-Setälä T.. ( 2005;). The Trichoderma reesei hydrophobin genes hfb1 and hfb2 have diverse functions in fungal development. FEMS Microbiol Lett253:281–288 [CrossRef][PubMed]
    [Google Scholar]
  6. Bernasconi R., Molinari M.. ( 2011;). ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr Opin Cell Biol23:176–183 [CrossRef][PubMed]
    [Google Scholar]
  7. Cherry J. R., Fidantsef A. L.. ( 2003;). Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol14:438–443 [CrossRef][PubMed]
    [Google Scholar]
  8. Chundawat S. P. S., Lipton M. S., Purvine S. O., Uppugundla N., Gao D., Balan V., Dale B. E.. ( 2011;). Proteomics-based compositional analysis of complex cellulase–hemicellulase mixtures. J Proteome Res10:4365–4372 [CrossRef][PubMed]
    [Google Scholar]
  9. Collén A., Saloheimo M., Bailey M., Penttilä M., Pakula T. M.. ( 2005;). Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng89:335–344 [CrossRef][PubMed]
    [Google Scholar]
  10. Conesa A., Punt P. J., van Luijk N., van den Hondel C. A.. ( 2001;). The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol33:155–171 [CrossRef][PubMed]
    [Google Scholar]
  11. Cox J. S., Walter P.. ( 1996;). A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell87:391–404 [CrossRef][PubMed]
    [Google Scholar]
  12. Dienes D., Börjesson J., Hägglund P., Tjerneld F., Lidén G., Réczey K., Stålbrand H.. ( 2007;). Identification of a trypsin-like serine protease from Trichoderma reesei QM9414. Enzyme Microb Technol40:1087–1094 [CrossRef]
    [Google Scholar]
  13. Divne C., Ståhlberg J., Teeri T. T., Jones T. A.. ( 1998;). High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol275:309–325 [CrossRef][PubMed]
    [Google Scholar]
  14. Foreman P. K., Brown D., Dankmeyer L., Dean R., Diener S., Dunn-Coleman N. S., Goedegebuur F., Houfek T. D., England G. J.. & other authors ( 2003;). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem278:31988–31997 [CrossRef][PubMed]
    [Google Scholar]
  15. Fryksdale B. G., Jedrzejewski P. T., Wong D. L., Gaertner A. L., Miller B. S.. ( 2002;). Impact of deglycosylation methods on two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry for proteomic analysis. Electrophoresis23:2184–2193 [CrossRef][PubMed]
    [Google Scholar]
  16. Ghosh A., Al-Rabiai S., Ghosh B. K., Trimiño-Vazquez H., Eveleigh D. E., Montenecourt B. S.. ( 1982;). Increased endoplasmic reticulum content of a mutant of Trichoderma reesei (RUT-C30) in relation to cellulase synthesis. Enzyme Microb Technol4:110–113 [CrossRef]
    [Google Scholar]
  17. Harkki A., Uusitalo J., Bailey M., Penttilä M., Knowles J. K. C.. ( 1989;). A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio/Technology7:596–603 [CrossRef]
    [Google Scholar]
  18. Harrison M. J., Nouwens A. S., Jardine D. R., Zachara N. E., Gooley A. A., Nevalainen H., Packer N. H.. ( 1998;). Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem256:119–127 [CrossRef][PubMed]
    [Google Scholar]
  19. Harrison M. J., Wathugala I. M., Tenkanen M., Packer N. H., Nevalainen K. M. H.. ( 2002;). Glycosylation of acetylxylan esterase from Trichoderma reesei. Glycobiology12:291–298 [CrossRef][PubMed]
    [Google Scholar]
  20. Hayakawa Y., Ishikawa E., Shoji J. Y., Nakano H., Kitamoto K.. ( 2011;). Septum-directed secretion in the filamentous fungus Aspergillus oryzae. Mol Microbiol81:40–55 [CrossRef][PubMed]
    [Google Scholar]
  21. He B., Guo W.. ( 2009;). The exocyst complex in polarized exocytosis. Curr Opin Cell Biol21:537–542 [CrossRef][PubMed]
    [Google Scholar]
  22. Herpoël-Gimbert I., Margeot A., Dolla A., Jan G., Mollé D., Lignon S., Mathis H., Sigoillot J.-C., Monot F., Asther M.. ( 2008;). Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels1:18 [CrossRef][PubMed]
    [Google Scholar]
  23. Hetz C., Glimcher L. H.. ( 2009;). Fine-tuning of the unfolded protein response: Assembling the IRE1α interactome. Mol Cell35:551–561 [CrossRef][PubMed]
    [Google Scholar]
  24. Hutagalung A. H., Novick P. J.. ( 2011;). Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev91:119–149 [CrossRef][PubMed]
    [Google Scholar]
  25. Joutsjoki V. V., Kuittinen M., Torkkeli T. K., Suominen P. L.. ( 1993;). Secretion of the Hormoconis resinae glucoamylase P enzyme from Trichoderma reesei directed by the natural and the cbh1 gene secretion signal. FEMS Microbiol Lett112:281–286 [CrossRef][PubMed]
    [Google Scholar]
  26. Kienle N., Kloepper T. H., Fasshauer D.. ( 2009;). Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi. BMC Evol Biol9:19 [CrossRef][PubMed]
    [Google Scholar]
  27. Kisko K., Szilvay G., Vuorimaa E., Lemmetyinen H., Linder M., Torkkeli M., Serimaa R.. ( 2007;). Self-assembled films of hydrophobin protein HFBIII from Trichoderma reesei. J Appl Cryst40:Suppl. 1S355–S360 [CrossRef]
    [Google Scholar]
  28. Kontkanen H., Westerholm-Parvinen A., Saloheimo M., Bailey M., Rättö M., Mattila I., Mohsina M., Kalkkinen N., Nakari-Setälä T., Buchert J.. ( 2009;). Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol75:2148–2157 [CrossRef][PubMed]
    [Google Scholar]
  29. Kubicek C. P., Baker S., Gamauf C., Kenerley C. M., Druzhinina I. S.. ( 2008;). Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol8:4 [CrossRef][PubMed]
    [Google Scholar]
  30. Kubicek C. P., Mikus M., Schuster A., Schmoll M., Seiboth B.. ( 2009;). Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels2:19 [CrossRef][PubMed]
    [Google Scholar]
  31. Levasseur A., Saloheimo M., Navarro D., Andberg M., Pontarotti P., Kruus K., Record E.. ( 2010;). Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC Biochem11:32 [CrossRef][PubMed]
    [Google Scholar]
  32. Linder M.. ( 2009;). Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci14:356–363 [CrossRef]
    [Google Scholar]
  33. Linder M. B., Qiao M., Laumen F., Selber K., Hyytiä T., Nakari-Setälä T., Penttilä M. E.. ( 2004;). Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry43:11873–11882 [CrossRef][PubMed]
    [Google Scholar]
  34. Malhotra J. D., Kaufman R. J.. ( 2007;). The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol18:716–731 [CrossRef][PubMed]
    [Google Scholar]
  35. Malsam J., Kreye S., Söllner T. H.. ( 2008;). Membrane fusion: SNAREs and regulation. Cell Mol Life Sci65:2814–2832 [CrossRef][PubMed]
    [Google Scholar]
  36. Mäntylä A., Paloheimo M., Suominen P.. ( 1998;). Industrial mutants and recombinant strains of Trichoderma reesei. Trichoderma and Gliogladiumvol. 2291–304 Harman G. E., Kubicek C.. London: Taylor and Francis;
    [Google Scholar]
  37. Maras M., De Bruyn A., Schraml J., Herdewijn P., Claeyssens M., Fiers W., Contreras R.. ( 1997;). Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem245:617–625 [CrossRef][PubMed]
    [Google Scholar]
  38. Margolles-Clark E., Hayes C. K., Harman G. E., Penttilä M.. ( 1996;). Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol62:2145–2151[PubMed]
    [Google Scholar]
  39. Martinez D., Berka R. M., Henrissat B., Saloheimo M., Arvas M., Baker S. E., Chapman J., Chertkov O., Coutinho P. M.. & other authors ( 2008;). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol26:553–560 [CrossRef][PubMed]
    [Google Scholar]
  40. Matsui Y., Toh-E A.. ( 1992;). Yeast RHO3 and RHO4 ras superfamily genes are necessary for bud growth, and their defect is suppressed by a high dose of bud formation genes CDC42 and BEM1. Mol Cell Biol12:5690–5699[PubMed]
    [Google Scholar]
  41. Mattinen M. L., Lantto R., Selinheimo E., Kruus K., Buchert J.. ( 2008;). Oxidation of peptides and proteins by Trichoderma reesei and Agaricus bisporus tyrosinases. J Biotechnol133:395–402 [CrossRef][PubMed]
    [Google Scholar]
  42. Montenecourt B., Eveleigh D.. ( 1979;). Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Adv Chem Ser181:289–301 [CrossRef]
    [Google Scholar]
  43. Nakańo A., Muramatsu M.. ( 1989;). A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol109:2677–2691 [CrossRef][PubMed]
    [Google Scholar]
  44. Nakari-Setälä T., Aro N., Kalkkinen N., Alatalo E., Penttilä M.. ( 1996;). Genetic and biochemical characterization of the Trichoderma reesei hydrophobin HFBI. Eur J Biochem235:248–255 [CrossRef][PubMed]
    [Google Scholar]
  45. Nakari-Setälä T., Aro N., Ilmén M., Muñoz G., Kalkkinen N., Penttilä M.. ( 1997;). Differential expression of the vegetative and spore-bound hydrophobins of Trichoderma reesei – cloning and characterization of the hfb2 gene. Eur J Biochem248:415–423 [CrossRef][PubMed]
    [Google Scholar]
  46. Nevalainen H., Penttilä M.. ( 2004;). Molecular biology of cellulolytic fungi. The Mycota II, Genetics and Biotechnology, 2nd edn.369–390 Kück U.. Berlin, Heidelberg: Springer-Verlag;
    [Google Scholar]
  47. Nevalainen H., Te’o V., Penttilä M.. ( 2004;). Application of genetic engineering for strain improvement in filamentous fungi. Handbook of Fungal Biotechnology193–208 Arora D. K.. New York, Basel: Marcel Dekker; [CrossRef]
    [Google Scholar]
  48. Nevalainen H., Te’o V., Penttilä M., Pakula T.. 2005; Heterologous gene expression in filamentous fungi: a holistic view. Applied Mycology and Biotechnology, Genes and Genomicsvol. 5211–237 Arora D. K., Berka R.. Amsterdam, The Netherlands: Elsevier;
    [Google Scholar]
  49. Nykänen M.. ( 2002;). Protein secretion in Trichoderma reesei. Expression, secretion and maturation of cellobiohydrolase I, barley cysteine proteinase and calf chymosin in Rut-C30.
  50. Nykänen M., Saarelainen R., Raudaskoski M., Nevalainen K., Mikkonen A.. ( 1997;). Expression and secretion of barley cysteine endopeptidase B and cellobiohydrolase I in Trichoderma reesei. Appl Environ Microbiol63:4929–4937[PubMed]
    [Google Scholar]
  51. Nykänen M. J., Raudaskoski M., Nevalainen H., Mikkonen A.. ( 2002;). Maturation of barley cysteine endopeptidase expressed in Trichoderma reesei is distorted by incomplete processing. Can J Microbiol48:138–150 [CrossRef][PubMed]
    [Google Scholar]
  52. Nyyssönen E., Penttilä M., Harkki A., Saloheimo A., Knowles J. K. C., Keränen S.. ( 1993;). Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Biotechnology (N Y)11:591–595 [CrossRef][PubMed]
    [Google Scholar]
  53. Pakula T. M., Uusitalo J., Saloheimo M., Salonen K., Aarts R. J., Penttilä M.. ( 2000;). Monitoring the kinetics of glycoprotein synthesis and secretion in the filamentous fungus Trichoderma reesei: cellobiohydrolase I (CBHI) as a model protein. Microbiology146:223–232[PubMed]
    [Google Scholar]
  54. Pakula T. M., Laxell M., Huuskonen A., Uusitalo J., Saloheimo M., Penttilä M.. ( 2003;). The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem278:45011–45020 [CrossRef][PubMed]
    [Google Scholar]
  55. Pakula T. M., Salonen K., Uusitalo J., Penttilä M.. ( 2005;). The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology151:135–143 [CrossRef][PubMed]
    [Google Scholar]
  56. Paloheimo M., Mäntylä A., Kallio J., Suominen P.. ( 2003;). High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure. Appl Environ Microbiol69:7073–7082 [CrossRef][PubMed]
    [Google Scholar]
  57. Penttilä M., Lehtovaara P., Nevalainen H., Bhikhabhai R., Knowles J.. ( 1986;). Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene45:253–263 [CrossRef][PubMed]
    [Google Scholar]
  58. Penttilä M., Limón C., Nevalainen H.. ( 2004;). Molecular biology of Trichoderma and biotechnological applications. Handbook of Fungal Biotechnology413–427 Arora D. K.. New York, Basel: Marcel Dekker; [CrossRef]
    [Google Scholar]
  59. Read N. D.. ( 2011;). Exocytosis and growth do not occur only at hyphal tips. Mol Microbiol81:4–7 [CrossRef][PubMed]
    [Google Scholar]
  60. Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A.. ( 1990;). Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science249:380–386 [CrossRef][PubMed]
    [Google Scholar]
  61. Sallese M., Giannotta M., Luini A.. ( 2009;). Coordination of the secretory compartments via inter-organelle signalling. Semin Cell Dev Biol20:801–809 [CrossRef][PubMed]
    [Google Scholar]
  62. Saloheimo M., Lund M., Penttilä M. E.. ( 1999;). The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet262:35–45 [CrossRef][PubMed]
    [Google Scholar]
  63. Saloheimo M., Valkonen M., Penttilä M.. ( 2003;). Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol47:1149–1161 [CrossRef][PubMed]
    [Google Scholar]
  64. Saloheimo M., Wang H., Valkonen M., Vasara T., Huuskonen A., Riikonen M., Pakula T., Ward M., Penttilä M.. ( 2004;). Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Appl Environ Microbiol70:459–467 [CrossRef][PubMed]
    [Google Scholar]
  65. Selinheimo E., Saloheimo M., Ahola E., Westerholm-Parvinen A., Kalkkinen N., Buchert J., Kruus K.. ( 2006;). Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J273:4322–4335 [CrossRef][PubMed]
    [Google Scholar]
  66. Selinheimo E., Autio K., Kruus K., Buchert J.. ( 2007;). Elucidating the mechanism of laccase and tyrosinase in wheat bread making. J Agric Food Chem55:6357–6365 [CrossRef][PubMed]
    [Google Scholar]
  67. Shoemaker S., Schweickart V., Ladner M., Gelfand D., Kwok S., Myambo K., Innis M.. ( 1983;). Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Nat Biotechnol1:691–696 [CrossRef]
    [Google Scholar]
  68. Shoji J. Y., Arioka M., Kitamoto K.. ( 2008;). Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production. Biotechnol Lett30:7–14 [CrossRef][PubMed]
    [Google Scholar]
  69. Sidrauski C., Cox J. S., Walter P.. ( 1996;). tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell87:405–413 [CrossRef][PubMed]
    [Google Scholar]
  70. Søgaard M., Tani K., Ye R. R., Geromanos S., Tempst P., Kirchhausen T., Rothman J. E., Söllner T.. ( 1994;). A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell78:937–948 [CrossRef][PubMed]
    [Google Scholar]
  71. Spang A.. ( 2008;). Membrane traffic in the secretory pathway: the life cycle of a transport vesicle. Cell Mol Life Sci65:2781–2789 [CrossRef][PubMed]
    [Google Scholar]
  72. Stals I., Sandra K., Devreese B., Van Beeumen J., Claeyssens M.. ( 2004;). Factors influencing glycosylation of Trichoderma reesei cellulases. II: N-glycosylation of Cel7A core protein isolated from different strains. Glycobiology14:725–737 [CrossRef][PubMed]
    [Google Scholar]
  73. Steiger M. G., Mach R. L., Mach-Aigner A. R.. ( 2010;). An accurate normalization strategy for RT-qPCR in Hypocrea jecorina (Trichoderma reesei). J Biotechnol145:30–37 [CrossRef][PubMed]
    [Google Scholar]
  74. Teeri T. T., Lehtovaara P., Kauppinen S., Salovuori I., Knowles J.. ( 1987;). Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene51:43–52 [CrossRef][PubMed]
    [Google Scholar]
  75. Travers K. J., Patil C. K., Wodicka L., Lockhart D. J., Weissman J. S., Walter P.. ( 2000;). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell101:249–258 [CrossRef][PubMed]
    [Google Scholar]
  76. Valkonen M.. ( 2003;). Functional studies of the secretory pathway of filamentous fungi. The effect of unfolded protein response on protein production Espoo, Finland: VTT Publications 505;
    [Google Scholar]
  77. Valkonen M., Penttilä M., Saloheimo M.. ( 2003a;). Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol69:2065–2072 [CrossRef][PubMed]
    [Google Scholar]
  78. Valkonen M., Ward M., Wang H., Penttilä M., Saloheimo M.. ( 2003b;). Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol69:6979–6986 [CrossRef][PubMed]
    [Google Scholar]
  79. Valkonen M., Penttilä M., Saloheimo M.. ( 2004;). The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics272:443–451 [CrossRef][PubMed]
    [Google Scholar]
  80. Valkonen M., Kalkman E. R., Saloheimo M., Penttilä M., Read N. D., Duncan R. R.. ( 2007;). Spatially segregated SNARE protein interactions in living fungal cells. J Biol Chem282:22775–22785 [CrossRef][PubMed]
    [Google Scholar]
  81. Vasara T., Saloheimo M., Keränen S., Penttilä M.. ( 2001a;). Trichoderma reesei rho3 a homologue of yeast RH03 suppresses the growth defect of yeast sec15-1 mutation. Curr Genet40:119–127 [CrossRef][PubMed]
    [Google Scholar]
  82. Vasara T., Salusjärvi L., Raudaskoski M., Keränen S., Penttilä M., Saloheimo M.. ( 2001b;). Interactions of the Trichoderma reesei rho3 with the secretory pathway in yeast and T. reesei. Mol Microbiol42:1349–1361 [CrossRef][PubMed]
    [Google Scholar]
  83. Vasara T., Keränen S., Penttilä M., Saloheimo M.. ( 2002;). Characterisation of two 14-3-3 genes from Trichoderma reesei: interactions with yeast secretory pathway components. Biochim Biophys Acta1590:27–40 [CrossRef][PubMed]
    [Google Scholar]
  84. Veldhuisen G., Saloheimo M., Fiers M. A., Punt P. J., Contreras R., Penttilä M., van den Hondel C. A. M. J. J.. ( 1997;). Isolation and analysis of functional homologues of the secretion-related SAR1 gene of Saccharomyces cerevisiae from Aspergillus niger and Trichoderma reesei. Mol Gen Genet256:446–455 [CrossRef][PubMed]
    [Google Scholar]
  85. Vinzant T. B., Adney W. S., Decker S. R., Baker J. O., Kinter M. T., Sherman N. E., Fox J. W., Himmel M. E.. ( 2001;). Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotechnol91-93:99–108 [CrossRef][PubMed]
    [Google Scholar]
  86. Wilson D. W., Wilcox C. A., Flynn G. C., Chen E., Kuang W. J., Henzel W. J., Block M. R., Ullrich A., Rothman J. E.. ( 1989;). A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature339:355–359 [CrossRef][PubMed]
    [Google Scholar]
  87. Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K.. ( 2001;). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell107:881–891 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053132-0
Loading
/content/journal/micro/10.1099/mic.0.053132-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error