1887

Abstract

Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, ATCC 33323 , had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of ATCC 33323 , in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052928-0
2012-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/944.html?itemId=/content/journal/micro/10.1099/mic.0.052928-0&mimeType=html&fmt=ahah

References

  1. Alpert C. A. , Chassy B. M. . ( 1990; ). Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei. Evidence that a cysteine residue is essential for sugar phosphorylation. . J Biol Chem 265:, 22561–22568.[PubMed]
    [Google Scholar]
  2. Azcarate-Peril M. A. , Altermann E. , Goh Y. J. , Tallon R. , Sanozky-Dawes R. B. , Pfeiler E. A. , O’Flaherty S. , Buck B. L. , Dobson A. . & other authors ( 2008; ). Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. . Appl Environ Microbiol 74:, 4610–4625. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barabote R. D. , Saier M. H. Jr . ( 2005; ). Comparative genomic analyses of the bacterial phosphotransferase system. . Microbiol Mol Biol Rev 69:, 608–634. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barrangou R. , Altermann E. , Hutkins R. , Cano R. , Klaenhammer T. R. . ( 2003; ). Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus . . Proc Natl Acad Sci U S A 100:, 8957–8962. [CrossRef] [PubMed]
    [Google Scholar]
  5. Barrangou R. , Azcarate-Peril M. A. , Duong T. , Conners S. B. , Kelly R. M. , Klaenhammer T. R. . ( 2006; ). Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. . Proc Natl Acad Sci U S A 103:, 3816–3821. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bruno-Bárcena J. M. , Azcárate-Peril M. A. , Klaenhammer T. R. , Hassan H. M. . ( 2005; ). Marker-free chromosomal integration of the manganese superoxide dismutase gene (sodA) from Streptococcus thermophilus into Lactobacillus gasseri . . FEMS Microbiol Lett 246:, 91–101. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chassy B. M. , Thompson J. . ( 1983; ). Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and β-d-phosphogalactoside galactohydrolase activities in Lactobacillus casei . . J Bacteriol 154:, 1195–1203.[PubMed]
    [Google Scholar]
  8. Chassy B. M. , Gibson E. , Giuffrida A. . ( 1976; ). Evidence for extrachromosomal elements in Lactobacillus . . J Bacteriol 127:, 1576–1578.[PubMed]
    [Google Scholar]
  9. Cvitkovitch D. G. , Boyd D. A. , Thevenot T. , Hamilton I. R. . ( 1995; ). Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. . J Bacteriol 177:, 2251–2258.[PubMed]
    [Google Scholar]
  10. de Vos W. M. , Vaughan E. E. . ( 1994; ). Genetics of lactose utilization in lactic acid bacteria. . FEMS Microbiol Rev 15:, 217–237.[PubMed] [CrossRef]
    [Google Scholar]
  11. de Vos W. M. , Boerrigter I. , van Rooyen R. J. , Reiche B. , Hengstenberg W. . ( 1990; ). Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis . . J Biol Chem 265:, 22554–22560.[PubMed]
    [Google Scholar]
  12. Duong T. , Barrangou R. , Russell W. M. , Klaenhammer T. R. . ( 2006; ). Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. . Appl Environ Microbiol 72:, 1218–1225. [CrossRef] [PubMed]
    [Google Scholar]
  13. Francl A. L. , Thongaram T. , Miller M. J. . ( 2010; ). The PTS transporters of Lactobacillus gasseri ATCC 33323. . BMC Microbiol 10:, 77. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gosalbes M. J. , Monedero V. , Pérez-Martínez G. . ( 1999; ). Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei . . J Bacteriol 181:, 3928–3934.[PubMed]
    [Google Scholar]
  15. Hill A. D. , Reilly P. J. . ( 2008; ). Computational analysis of glycoside hydrolase family 1 specificities. . Biopolymers 89:, 1021–1031. [CrossRef] [PubMed]
    [Google Scholar]
  16. Honda H. , Kataoka F. , Nagaoka S. , Kawai Y. , Kitazawa H. , Itoh H. , Kimura K. , Taketomo N. , Yamazaki Y. . & other authors ( 2007; ). β-Galactosidase, phospho-β-galactosidase and phospho-β-glucosidase activities in lactobacilli strains isolated from human faeces. . Lett Appl Microbiol 45:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  17. Honeyman A. L. , Curtiss R. III . ( 1992; ). Isolation, characterization, and nucleotide sequence of the Streptococcus mutans mannitol-phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphoenolpyruvate phosphotransferase system. . Infect Immun 60:, 3369–3375.[PubMed]
    [Google Scholar]
  18. Kandler O. . ( 1983; ). Carbohydrate metabolism in lactic acid bacteria. . Antonie van Leeuwenhoek 49:, 209–224. [CrossRef] [PubMed]
    [Google Scholar]
  19. Klimke W. , Agarwala R. , Badretdin A. , Chetvernin S. , Ciufo S. , Fedorov B. , Kiryutin B. , O’Neill K. , Resch W. . & other authors ( 2009; ). The National Center For Biotechnology Information’s Protein Clusters Database. . Nucleic Acids Res 37: (Database issue), D216–D223. [CrossRef] [PubMed]
    [Google Scholar]
  20. Law J. , Buist G. , Haandrikman A. , Kok J. , Venema G. , Leenhouts K. . ( 1995; ). A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. . J Bacteriol 177:, 7011–7018.[PubMed]
    [Google Scholar]
  21. Leong-Morgenthaler P. , Zwahlen M. C. , Hottinger H. . ( 1991; ). Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved. . J Bacteriol 173:, 1951–1957.[PubMed]
    [Google Scholar]
  22. Liévin-Le Moal V. , Servin A. L. . ( 2006; ). The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. . Clin Microbiol Rev 19:, 315–337. [CrossRef] [PubMed]
    [Google Scholar]
  23. Luchansky J. B. , Tennant M. C. , Klaenhammer T. R. . ( 1991; ). Molecular cloning and deoxyribonucleic acid polymorphisms in Lactobacillus acidophilus and Lactobacillus gasseri . . J Dairy Sci 74:, 3293–3302. [CrossRef] [PubMed]
    [Google Scholar]
  24. Macklaim J. M. , Gloor G. B. , Anukam K. C. , Cribby S. , Reid G. . ( 2011; ). At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. . Proc Natl Acad Sci U S A 108: (Suppl. 1), 4688–4695. [CrossRef] [PubMed]
    [Google Scholar]
  25. Makarova K. , Slesarev A. , Wolf Y. , Sorokin A. , Mirkin B. , Koonin E. , Pavlov A. , Pavlova N. , Karamychev V. . & other authors ( 2006; ). Comparative genomics of the lactic acid bacteria. . Proc Natl Acad Sci U S A 103:, 15611–15616. [CrossRef] [PubMed]
    [Google Scholar]
  26. Marco M. L. , Bongers R. S. , de Vos W. M. , Kleerebezem M. . ( 2007; ). Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. . Appl Environ Microbiol 73:, 124–132. [CrossRef] [PubMed]
    [Google Scholar]
  27. McKay L. , Miller A. III , Sandine W. E. , Elliker P. R. . ( 1970; ). Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. . J Bacteriol 102:, 804–809.[PubMed]
    [Google Scholar]
  28. Nyquist O. L. , McLeod A. , Brede D. A. , Snipen L. , Aakra A. , Nes I. F. . ( 2011; ). Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. . Mol Genet Genomics 285:, 297–311. [CrossRef] [PubMed]
    [Google Scholar]
  29. Ouwehand A. C. , Salminen S. , Isolauri E. . ( 2002; ). Probiotics: an overview of beneficial effects. . Antonie van Leeuwenhoek 82:, 279–289. [CrossRef] [PubMed]
    [Google Scholar]
  30. Premi L. , Sandine W. E. , Elliker P. R. . ( 1972; ). Lactose-hydrolyzing enzymes of Lactobacillus species. . Appl Microbiol 24:, 51–57.[PubMed]
    [Google Scholar]
  31. Reid G. , Sanders M. E. , Gaskins H. R. , Gibson G. R. , Mercenier A. , Rastall R. , Roberfroid M. , Rowland I. , Cherbut C. , Klaenhammer T. R. . ( 2003; ). New scientific paradigms for probiotics and prebiotics. . J Clin Gastroenterol 37:, 105–118. [CrossRef] [PubMed]
    [Google Scholar]
  32. Reizer J. , Saier M. H. Jr . ( 1997; ). Modular multidomain phosphoryl transfer proteins of bacteria. . Curr Opin Struct Biol 7:, 407–415. [CrossRef] [PubMed]
    [Google Scholar]
  33. Russell W. M. , Klaenhammer T. R. . ( 2001; ). Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. . Appl Environ Microbiol 67:, 4361–4364. [CrossRef] [PubMed]
    [Google Scholar]
  34. Schulte D. , Hengstenberg W. . ( 2000; ). Engineering the active center of the 6-phospho-β-galactosidase from Lactococcus lactis . . Protein Eng 13:, 515–518. [CrossRef] [PubMed]
    [Google Scholar]
  35. Wood B. J. B. , Warner P. J. . ( 2003; ). Genetics of Lactic Acid Bacteria. New York:: Kluwer Academic;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052928-0
Loading
/content/journal/micro/10.1099/mic.0.052928-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error