1887

Abstract

is an intracellular pathogen which causes tularaemia. There is no licensed vaccine currently available for prophylaxis. The γ-glutamyl transpeptidase (GGT) encoded by the gene has been shown to be important for the intracellular survival of . In this study we have constructed a deletion mutant in the highly virulent . strain SCHU S4. Characterization of the mutant strain confirmed the function of , and confirmed the role of GGT in cysteine acquisition. The mutant strain was highly attenuated both and using murine models of infection. Moreover, we have demonstrated that the attenuated mutant is able to induce protective immunity against an SCHU S4 challenge, and thus may be a candidate for the development of an attenuated vaccine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052902-0
2011-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3172.html?itemId=/content/journal/micro/10.1099/mic.0.052902-0&mimeType=html&fmt=ahah

References

  1. Alkhuder K., Meibom K. L., Dubail I., Dupuis M., Charbit A. ( 2009). Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis . PLoS Pathog 5:e1000284 [View Article][PubMed]
    [Google Scholar]
  2. Ark N. M., Mann B. J. ( 2011). Impact of Francisella tularensis pilin homologs on pilus formation and virulence. Microb Pathog 51:110–120 [View Article][PubMed]
    [Google Scholar]
  3. Atlas R. M. ( 2004). Handbook of Microbiological Media Boca Raton, FL: CRC Press; [View Article]
    [Google Scholar]
  4. Barnes I. H., Bagnall M. C., Browning D. D., Thompson S. A., Manning G., Newell D. G. ( 2007). γ-Glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni . Microb Pathog 43:198–207 [View Article][PubMed]
    [Google Scholar]
  5. Bina X. R., Lavine C. L., Miller M. A., Bina J. E. ( 2008). The AcrAB RND efflux system from the live vaccine strain of Francisella tularensis is a multiple drug efflux system that is required for virulence in mice. FEMS Microbiol Lett 279:226–233 [View Article][PubMed]
    [Google Scholar]
  6. Brotcke A., Weiss D. S., Kim C. C., Chain P., Malfatti S., Garcia E., Monack D. M. ( 2006). Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis . Infect Immun 74:6642–6655 [View Article][PubMed]
    [Google Scholar]
  7. Chamberlain R. E. ( 1965). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13:232–235[PubMed]
    [Google Scholar]
  8. Checroun C., Wehrly T. D., Fischer E. R., Hayes S. F., Celli J. ( 2006). Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A 103:14578–14583 [View Article][PubMed]
    [Google Scholar]
  9. Chevalier C., Thiberge J. M., Ferrero R. L., Labigne A. ( 1999). Essential role of Helicobacter pylori γ-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol Microbiol 31:1359–1372 [View Article][PubMed]
    [Google Scholar]
  10. Clemens D. L., Lee B. Y., Horwitz M. A. ( 2004). Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72:3204–3217 [View Article][PubMed]
    [Google Scholar]
  11. Conlan J. W., Oyston P. C. ( 2007). Vaccines against Francisella tularensis . Ann N Y Acad Sci 1105:325–350 [View Article][PubMed]
    [Google Scholar]
  12. Dennis D. T., Inglesby T. V., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., Fine A. D., Friedlander A. M., Hauer J. et al. ( 2001). Tularemia as a biological weapon: medical and public health management. JAMA 285:2763–2773 [View Article][PubMed]
    [Google Scholar]
  13. Dorofe’ev K. A. ( 1947). Classification of the causative agent of tularemia. Symp Res Works Inst Epidemiol Mikrobiol Chita 1:170–180
    [Google Scholar]
  14. Euzéby J. P. ( 1997). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [View Article][PubMed]
    [Google Scholar]
  15. Forsman M., Sandström G., Sjöstedt A. ( 1994). Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol 44:38–46 [View Article][PubMed]
    [Google Scholar]
  16. Gill V., Cunha B. A. ( 1997). Tularemia pneumonia. Semin Respir Infect 12:61–67[PubMed]
    [Google Scholar]
  17. Golovliov I., Ericsson M., Sandström G., Tärnvik A., Sjöstedt A. ( 1997). Identification of proteins of Francisella tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect Immun 65:2183–2189[PubMed]
    [Google Scholar]
  18. Golovliov I., Sjöstedt A., Mokrievich A., Pavlov V. ( 2003). A method for allelic replacement in Francisella tularensis . FEMS Microbiol Lett 222:273–280 [View Article][PubMed]
    [Google Scholar]
  19. Gong M., Ho B. ( 2004). Prominent role of gamma-glutamyl-transpeptidase on the growth of Helicobacter pylori . World J Gastroenterol 10:2994–2996[PubMed]
    [Google Scholar]
  20. Green M., Choules G., Rogers D., Titball R. W. ( 2005). Efficacy of the live attenuated Francisella tularensis vaccine (LVS) in a murine model of disease. Vaccine 23:2680–2686 [View Article][PubMed]
    [Google Scholar]
  21. Gregus Z., Stein A. F., Klaassen C. D. ( 1987). Effect of inhibition of gamma-glutamyltranspeptidase on biliary and urinary excretion of glutathione-derived thiols and methylmercury. J Pharmacol Exp Ther 242:27–32[PubMed]
    [Google Scholar]
  22. Hesselbrock W., Foshay L. ( 1945). The morphology of Bacterium tularense . J Bacteriol 49:209–231[PubMed]
    [Google Scholar]
  23. Hollis D. G., Weaver R. E., Steigerwalt A. G., Wenger J. D., Moss C. W., Brenner D. J. ( 1989). Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J Clin Microbiol 27:1601–1608[PubMed]
    [Google Scholar]
  24. Hubálek M., Hernychová L., Brychta M., Lenco J., Zechovská J., Stulík J. ( 2004). Comparative proteome analysis of cellular proteins extracted from highly virulent Francisella tularensis ssp. tularensis and less virulent F. tularensis ssp. holarctica and F. tularensis ssp. mediaasiatica . Proteomics 4:3048–3060 [View Article][PubMed]
    [Google Scholar]
  25. Huseby N. E., Strömme J. H. ( 1974). Practical points regarding routine determination of γ-glutamyl transferase (γ-GT) in serum with a kinetic method at 37 °C. Scand J Clin Lab Invest 34:357–363 [View Article][PubMed]
    [Google Scholar]
  26. Ikeda Y., Fujii J., Anderson M. E., Taniguchi N., Meister A. ( 1995). Involvement of Ser-451 and Ser-452 in the catalysis of human gamma-glutamyl transpeptidase. J Biol Chem 270:22223–22228 [View Article][PubMed]
    [Google Scholar]
  27. Kadzhaev K., Zingmark C., Golovliov I., Bolanowski M., Shen H., Conlan W., Sjöstedt A. ( 2009). Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. PLoS ONE 4:e5463 [View Article][PubMed]
    [Google Scholar]
  28. Lai X. H., Golovliov I., Sjöstedt A. ( 2004). Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis . Microb Pathog 37:225–230[PubMed] [CrossRef]
    [Google Scholar]
  29. LeButt H. ( 2008). The construction and use of a Francisella tularensis DNA microarray .
    [Google Scholar]
  30. Masip L., Veeravalli K., Georgiou G. ( 2006). The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762 [View Article][PubMed]
    [Google Scholar]
  31. McCoy G. W., Chapin C. W. ( 1912). Further observations on a plague-like disease of rodents with a preliminary note on the causative agent, Bacterium tularensis . J Infect Dis 10:61–72 [View Article]
    [Google Scholar]
  32. McGovern K. J., Blanchard T. G., Gutierrez J. A., Czinn S. J., Krakowka S., Youngman P. ( 2001). γ-Glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization. Infect Immun 69:4168–4173 [View Article][PubMed]
    [Google Scholar]
  33. Michell S. L., Dean R. E., Eyles J. E., Hartley M. G., Waters E., Prior J. L., Titball R. W., Oyston P. C. ( 2010). Deletion of the Bacillus anthracis capB homologue in Francisella tularensis subspecies tularensis generates an attenuated strain that protects mice against virulent tularaemia. J Med Microbiol 59:1275–1284 [View Article][PubMed]
    [Google Scholar]
  34. Milne T. S., Michell S. L., Diaper H., Wikström P., Svensson K., Oyston P. C., Titball R. W. ( 2007). A 55 kDa hypothetical membrane protein is an iron-regulated virulence factor of Francisella tularensis subsp. novicida U112. J Med Microbiol 56:1268–1276 [View Article][PubMed]
    [Google Scholar]
  35. Mörner T. ( 1992). The ecology of tularaemia. Rev Sci Tech 11:1123–1130[PubMed]
    [Google Scholar]
  36. Olsufiev N. G., Emelyanova O. S., Dunayeva T. N. ( 1959). Comparative study of strains of B. tularense in the old and new world and their taxonomy. J Hyg Epidemiol Microbiol Immunol 3:138–149[PubMed]
    [Google Scholar]
  37. Olsufjev N. G., Meshcheryakova I. S. ( 1982). Infraspecific taxonomy of tularemia agent Francisella tularensis McCoy et Chapin. J Hyg Epidemiol Microbiol Immunol 26:291–299[PubMed]
    [Google Scholar]
  38. Owens R. A., Hartman P. E. ( 1986). Glutathione: a protective agent in Salmonella typhimurium and Escherichia coli as measured by mutagenicity and by growth delay assays. Environ Mutagen 8:659–673 [View Article][PubMed]
    [Google Scholar]
  39. Oyston P. C., Griffiths R. ( 2009). Francisella virulence: significant advances, ongoing challenges and unmet needs. Expert Rev Vaccines 8:1575–1585 [View Article][PubMed]
    [Google Scholar]
  40. Pechous R. D., McCarthy T. R., Mohapatra N. P., Soni S., Penoske R. M., Salzman N. H., Frank D. W., Gunn J. S., Zahrt T. C. ( 2008). A Francisella tularensis Schu S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PLoS ONE 3:e2487 [View Article][PubMed]
    [Google Scholar]
  41. Pechous R. D., McCarthy T. R., Zahrt T. C. ( 2009). Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 73:684–711 [View Article][PubMed]
    [Google Scholar]
  42. Qin A., Mann B. J. ( 2006). Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2. BMC Microbiol 6:69 [View Article][PubMed]
    [Google Scholar]
  43. Qin A., Scott D. W., Mann B. J. ( 2008). Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect Immun 76:3086–3092 [View Article][PubMed]
    [Google Scholar]
  44. Quarry J. E., Isherwood K. E., Michell S. L., Diaper H., Titball R. W., Oyston P. C. ( 2007). A Francisella tularensis subspecies novicida purF mutant, but not a purA mutant, induces protective immunity to tularemia in mice. Vaccine 25:2011–2018 [View Article][PubMed]
    [Google Scholar]
  45. Riccillo P. M., Muglia C. I., de Bruijn F. J., Roe A. J., Booth I. R., Aguilar O. M. ( 2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753 [View Article][PubMed]
    [Google Scholar]
  46. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Shen H., Harris G., Chen W., Sjöstedt A., Ryden P., Conlan W. ( 2010). Molecular immune responses to aerosol challenge with Francisella tularensis in mice inoculated with live vaccine candidates of varying efficacy. PLoS ONE 5:e13349 [View Article][PubMed]
    [Google Scholar]
  48. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791 [View Article]
    [Google Scholar]
  49. Sjöstedt A. ( 2006). Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect 8:561–567 [View Article][PubMed]
    [Google Scholar]
  50. Takahashi H., Hirose K., Watanabe H. ( 2004). Necessity of meningococcal γ-glutamyl aminopeptidase for Neisseria meningitidis growth in rat cerebrospinal fluid (CSF) and CSF-like medium. J Bacteriol 186:244–247 [View Article][PubMed]
    [Google Scholar]
  51. Tate S. S., Meister A. ( 1981). γ-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 39:357–368 [View Article][PubMed]
    [Google Scholar]
  52. Tempel R., Lai X. H., Crosa L., Kozlowicz B., Heffron F. ( 2006). Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun 74:5095–5105 [View Article][PubMed]
    [Google Scholar]
  53. Thomas R. M., Titball R. W., Oyston P. C., Griffin K., Waters E., Hitchen P. G., Michell S. L., Grice I. D., Wilson J. C., Prior J. L. ( 2007). The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun 75:371–378 [View Article][PubMed]
    [Google Scholar]
  54. Thomas R. M., Twine S. M., Fulton K. M., Tessier L., Kilmury S. L. N., Ding W., Harmer N., Michell S. L., Oyston P. C. F., Prior J. L. ( 2011). Glycosylation of DsbA in Francisella tularensis subspecies tularensis . J Bacteriol 193:5498–5509 [View Article]
    [Google Scholar]
  55. Tigertt W. D. ( 1962). Soviet viable Pasteurella tularensis vaccines. A review of selected articles. Bacteriol Rev 26:354–373[PubMed]
    [Google Scholar]
  56. Twine S., Byström M., Chen W., Forsman M., Golovliov I., Johansson A., Kelly J., Lindgren H., Svensson K. et al. ( 2005). A mutant of Francisella tularensis strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infect Immun 73:8345–8352 [View Article][PubMed]
    [Google Scholar]
  57. Wills E. D. ( 1966). Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676[PubMed]
    [Google Scholar]
  58. Xu K., Strauch M. A. ( 1996). Identification, sequence, and expression of the gene encoding γ-glutamyltranspeptidase in Bacillus subtilis . J Bacteriol 178:4319–4322[PubMed]
    [Google Scholar]
  59. Zarnowski R., Cooper K. G., Brunold L. S., Calaycay J., Woods J. P. ( 2008). Histoplasma capsulatum secreted γ-glutamyltransferase reduces iron by generating an efficient ferric reductant. Mol Microbiol 70:352–368 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052902-0
Loading
/content/journal/micro/10.1099/mic.0.052902-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error