1887

Abstract

head blight (FHB) is a re-emerging wheat disease that causes extensive damage through direct losses in yield and quality due to the presence of damaged kernels and their associated mycotoxins such as the trichothecene deoxynivalenol (DON). Biological control, including the treatment of crop residues with antagonists, in order to reduce pathogen inoculum of FHB, holds considerable promise. Ten isolates, previously selected for their ability to grow in the presence of DON, were preliminarily investigated as potential antagonists against and mycotoxigenic strains in plate confrontation assays. The three isolates showing antibiosis and mycoparasitism were evaluated for their capacity to inhibit DON production by and on two natural substrates. The expression of some chitinase-encoding genes by the two best resulting strains, during interaction with and , was monitored. All investigated genes from chitinase subgroups A, B and the new subgroup C responded to mycoparasitic conditions and were upregulated before contact and/or when in contact with the host. 6085, the best antagonist, was finally used in a competition test against and on natural substrates, using a qPCR approach to evaluate its effect on the pathogen’s growth and DON production in haulms and rice. This test confirmed the ability of 6085 to antagonize the pathogens on rice. On wheat haulms, an extreme oligotrophic environment, 6085 seemed to develop very poorly and the growth of both the pathogens was unaffected by the presence of the antagonist.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052639-0
2012-01-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/98.html?itemId=/content/journal/micro/10.1099/mic.0.052639-0&mimeType=html&fmt=ahah

References

  1. Anees M., Tronsmo A., Edel-Hermann V., Hjeljord L. G., Héraud C., Steinberg C.. ( 2010;). Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol114:691–701 [CrossRef][PubMed]
    [Google Scholar]
  2. Beuchat L. R.. ( 1995;). Media for detecting and enumerating yeasts and moulds. Culture Media for Food Microbiology229–242 Corry J. E. L., Curtis G. D. W., Baird R. M.. Amsterdam: Elsevier; [CrossRef]
    [Google Scholar]
  3. Bottalico A., Perrone G.. ( 2002;). Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol108:611–624 [CrossRef]
    [Google Scholar]
  4. Brown H. L., Bruce A., Staines H. J.. ( 1999;). Assessment of the biocontrol potential of a Trichoderma viride isolate: Part II: Protection against soft rot and basidiomycete decay. Int Biodeterior Biodegradation44:225–231 [CrossRef]
    [Google Scholar]
  5. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P.. ( 2002;). Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev66:447–459 [CrossRef][PubMed]
    [Google Scholar]
  6. Carbone I., Kohn L. M.. ( 1999;). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia91:553–556 [CrossRef]
    [Google Scholar]
  7. Champeil A., Doré T., Fourbet J. F.. ( 2004;). Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci166:1389–1415 [CrossRef]
    [Google Scholar]
  8. Chet I.. ( 1987;). Trichoderma application, mode of action and potential as biocontrol agent of soilborne plant pathogenic fungi. Innovative Approaches to Plant Disease Control137–160 Chet I.. New York: Wiley;
    [Google Scholar]
  9. Dickinson C. H., Skidmore A. M.. ( 1976;). Interactions between germinating spores of Septoria nodorum and phylloplane fungi. Trans Br Mycol Soc66:45–56 [CrossRef]
    [Google Scholar]
  10. Doveri F., Sarrocco S., Pecchia S., Forti M., Vannacci G.. ( 2010;). Coprinellus mitrinodulisporus, a new species from chamois dung. Mycotaxon114:351–360 [CrossRef]
    [Google Scholar]
  11. Druzhinina I. S., Kopchinskiy A. G., Komoń M., Bissett J., Szakacs G., Kubicek C. P.. ( 2005;). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol42:813–828 [CrossRef][PubMed]
    [Google Scholar]
  12. Elmholt S.. ( 2008;). Mycotoxins in the soil environment. Secondary Metabolites in Soil Ecology167–203 Karlovsky P.. Berlin, Heidelberg: Springer-Verlag; [CrossRef]
    [Google Scholar]
  13. Filtenborg O., Frisvad J. C., Thrane U.. ( 1990;). The significance of yeast extract composition on metabolite production in Penicillium. Modern Concepts in Penicillium and Aspergillus Classification443–440 Samson R. A., Pitt J. I.. New York: Plenum;
    [Google Scholar]
  14. Frisvad J. C., Filtenborg O., Lund F., Thrane U.. ( 1992;). New selective media for the detection of toxigenic fungi in cereal products, meat and cheese. Modern Methods in Food Mycology275–285 Samson R. A., Hocking A. D., Pitt J. I., King A. D.. Amsterdam: Elsevier;
    [Google Scholar]
  15. Gruber S., Vaaje-Kolstad G., Matarese F., López-Mondéjar R., Kubicek C. P., Seidl-Seiboth V.. ( 2011;). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology21:122–133 [CrossRef][PubMed]
    [Google Scholar]
  16. Jaklitsch W. M., Samuels G. J., Dodd S. L., Lu B. S., Druzhinina I. S.. ( 2006;). Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Mycol56:135–177 [CrossRef][PubMed]
    [Google Scholar]
  17. Kopchinskiy A. G., Komon M., Kubicek C. P., Druzhinina I. S.. ( 2005;). TrichoBLAST: a multiloci database for Trichoderma and Hypocrea identification. Mycol Res109:658–660 [CrossRef]
    [Google Scholar]
  18. Lillehoj E. B., Elling F.. ( 1983;). Environmental conditions that facilitate ochratoxin contamination of agricultural commodities. Acta Agric Scand33:113–128 [CrossRef]
    [Google Scholar]
  19. Lorito M., Farkas V., Rebuffat S., Bodo B., Kubicek C. P.. ( 1996;). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol178:6382–6385[PubMed]
    [Google Scholar]
  20. Magan N., Hope R., Cairns V., Aldred D.. ( 2003;). Post-harvest fungal ecology: impact of fungal growth and mycotoxin accumulation in stored grain. Eur J Plant Pathol109:723–730 [CrossRef]
    [Google Scholar]
  21. Matarese F.. ( 2010;).Biocontrol of Fusarium head blight: molecular interactions between Trichoderma and mycotoxigenicFusarium
  22. McMullen M., Jones R., Gallenberg D.. ( 1997;). Scab of wheat and barley: a reemerging disease of devastating impact. Plant Dis81:1340–1348 [CrossRef]
    [Google Scholar]
  23. Nicolaisen M., Suproniene S., Nielsen L. K., Lazzaro I., Spliid N. H., Justesen A. F.. ( 2009;). Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Methods76:234–240 [CrossRef][PubMed]
    [Google Scholar]
  24. Omurtag G. Z., Beyoglu D.. ( 2007;). Occurrence of deoxynivalenol (vomitoxin) in beer in Turkey detected by HPLC. Food Contr18:163–166 [CrossRef]
    [Google Scholar]
  25. Palazzini J. M., Ramirez M. L., Torres A. M., Chulze S. N.. ( 2007;). Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Prot26:1702–1710 [CrossRef]
    [Google Scholar]
  26. Parry D. W., Jenkinson P., McLeod L.. ( 1995;). Fusarium head blight (scab) in small grain cereals – a review. Plant Pathol44:207–238 [CrossRef]
    [Google Scholar]
  27. Peraica M., Radić B., Lucić A., Pavlović M.. ( 1999;). Toxic effects of mycotoxins in humans. Bull World Health Organ77:754–766[PubMed]
    [Google Scholar]
  28. Pieters M. N., Freijer J., Baars B. J., Fiolet Jacob D. C. M., van Klaveren J., Slob W.. ( 2002;). Risk assessment of deoxynivalenol in food: concentration limits, exposure and effects. Mycotoxins and Food Safety504235–248 DeVries J. W., Trucksess M. W., Jackson L. S.. New York: Kluwer Academic/Plenum Publishers; [CrossRef]
    [Google Scholar]
  29. Reischer G. H., Lemmens M., Farnleitner A., Adler A., Mach R. L.. ( 2004;). Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe. J Microbiol Methods59:141–146 [CrossRef][PubMed]
    [Google Scholar]
  30. Seidl V., Druzhinina I. S., Kubicek C. P.. ( 2006;). A screening system for carbon sources enhancing β-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology152:2003–2012 [CrossRef][PubMed]
    [Google Scholar]
  31. Skidmore A. M., Dickinson C. H.. ( 1976;). Colony interactions and hyphal interference between Septoria nodosum and phylloplane fungi. Trans Br Mycol Soc66:57–64 [CrossRef]
    [Google Scholar]
  32. Wagacha J. M., Muthomi J. W.. ( 2007;). Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot26:877–885 [CrossRef]
    [Google Scholar]
  33. Walter S., Nicholson P., Doohan F. M.. ( 2010;). Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol185:54–66 [CrossRef][PubMed]
    [Google Scholar]
  34. White T. J., Bruns T., Lee S., Taylor J.. ( 1990;). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications315–322 Innis M., White T., Sninsky J. J.. San Diego: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052639-0
Loading
/content/journal/micro/10.1099/mic.0.052639-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error