1887

Abstract

In the present study we have assessed, by transcriptional and metabolic profiling, the systemic defence response of plants to the leaf pathogen pv. DC3000 () induced by the beneficial fungus T203. Expression analysis (qPCR) of a set of 137 genes related to defence responses showed that T203 root colonization is not associated with major detectable transcriptomic changes in leaves. However, plants challenged with the bacterial pathogen showed quantitative differences in gene expression when pre-inoculated with T203, supporting priming of the plant by this beneficial fungus. Among the defence-related genes affected by T203, lipid transfer protein (LTP)4, which encodes a member of the lipid transfer pathogenesis-related family, is upregulated, whereas the WRKY40 transcription factor, known to contribute to susceptibility to bacterial infection, shows reduced expression. On the other hand, root colonization by this beneficial fungus substantially alters the plant metabolic profile, including significant changes in amino acids, polyamines, sugars and citric acid cycle intermediates. This may in part reflect an increased energy supply required for the activation of plant defences and growth promotion effects mediated by species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052621-0
2012-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/139.html?itemId=/content/journal/micro/10.1099/mic.0.052621-0&mimeType=html&fmt=ahah

References

  1. Alfano G., Ivey M. L., Cakir C., Bos J. I., Miller S. A., Madden L. V., Kamoun S., Hoitink H. A. ( 2007). Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437 [View Article][PubMed]
    [Google Scholar]
  2. Bleecker A. B., Kende H. ( 2000). Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18 [View Article][PubMed]
    [Google Scholar]
  3. Bolton M. D., Kolmer J. A., Xu W. W., Garvin D. F. ( 2008). Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Mol Plant Microbe Interact 21:1515–1527 [View Article][PubMed]
    [Google Scholar]
  4. Coruzzi G., Last R. ( 2000). Amino acids. Biochemistry and Molecular Biology of Plant358–410 Bucchanan B. B., Gruissem W., Jones R. L. Rockville, MD: American Society of Plant Physiologists;
    [Google Scholar]
  5. Cuadros-Inostroza A., Caldana C., Redestig H., Kusano M., Lisec J., Peña-Cortés H., Willmitzer L., Hannah M. A. ( 2009). TargetSearch – a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics 10:428 [View Article][PubMed]
    [Google Scholar]
  6. Damodaran P. N., Udaiyan K., Jee H. J. ( 2010). Biochemical changes in cotton plants by arbuscular mycorrhizal colonization. Res Biotechnol 1:6–14
    [Google Scholar]
  7. Doornbos R., Scwachtje J., van Dongen J. T., Karojet S., Erban A., Kopka J., van Loon L. C., Bakker P. A. H. M. ( 2009). Root colonization and induction of systemic resistance by fluorescent Pseudomonas spp. in Arabidopsis: effect on primary metabolites in the leaves. Analysis of rhizosphere bacterial communities in Arabidopsis: impact of plant defense signaling67–80
    [Google Scholar]
  8. Forde B. G., Lea P. J. ( 2007). Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358 [View Article][PubMed]
    [Google Scholar]
  9. Gigolashvili T., Berger B., Mock H. P., Müller C., Weisshaar B., Flügge U. I. ( 2007). The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. . Plant J 50:886–901 [View Article][PubMed]
    [Google Scholar]
  10. Harman G. E. ( 2011). Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649 [View Article][PubMed]
    [Google Scholar]
  11. Kopka J., Schauer N., Krueger S., Birkemeyer C., Usadel B., Bergmüller E., Dörmann P., Weckwerth W., Gibon Y. & other authors ( 2005). [email protected]: the Golm Metabolome Database. Bioinformatics 21:1635–1638 [View Article][PubMed]
    [Google Scholar]
  12. Lanquar V., Loqué D., Hörmann F., Yuan L., Bohner A., Engelsberger W. R., Lalonde S., Schulze W. X., von Wirén N., Frommer W. B. ( 2009). Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis . Plant Cell 21:3610–3622 [View Article][PubMed]
    [Google Scholar]
  13. Libault M., Wan J., Czechowski T., Udvardi M., Stacey G. ( 2007). Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact 20:900–911 [View Article][PubMed]
    [Google Scholar]
  14. Lisec J., Schauer N., Kopka J., Willmitzer L., Fernie A. R. ( 2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396 [View Article][PubMed]
    [Google Scholar]
  15. Lorito M., Woo S. L., Harman G. E., Monte E. ( 2010). Translational research on Trichoderma: from ’omics to the field. Annu Rev Phytopathol 48:395–417 [View Article][PubMed]
    [Google Scholar]
  16. Perchepied L., Kroj T., Tronchet M., Loudet O., Roby D. ( 2006). Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana . PLoS ONE 1:e123 [View Article][PubMed]
    [Google Scholar]
  17. Roine E., Wei W., Yuan J., Nurmiaho-Lassila E. L., Kalkkinen N., Romantschuk M., He S. Y. ( 1997). Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 94:3459–3464 [View Article][PubMed]
    [Google Scholar]
  18. Samuels G. J., Ismaiel A., Bon M. C., De Respinis S., Petrini O. ( 2010). Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966 [View Article][PubMed]
    [Google Scholar]
  19. Sarjala T., Niemi K., Häggman H. ( 2010). Mycorrhiza formation is not needed for early growth induction and growth-related changes in polyamines in Scots pine seedlings in vitro . Plant Physiol Biochem 48:596–601 [View Article][PubMed]
    [Google Scholar]
  20. Sarosh B. R., Sivaramakrishnan S., Shetty H. S. ( 2005). Elicitation of defense related enzymes and resistance by l-methionine in pearl millet against downy mildew disease caused by Sclerospora graminicola . Plant Physiol Biochem 43:808–815 [View Article][PubMed]
    [Google Scholar]
  21. Segarra G., Casanova E., Bellido D., Odena M. A., Oliveira E., Trillas I. ( 2007). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952 [View Article][PubMed]
    [Google Scholar]
  22. Segarra G., Van der Ent S., Trillas I., Pieterse C. M. J. ( 2009). MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol (Stuttg) 11:90–96 [View Article][PubMed]
    [Google Scholar]
  23. Sels J., Mathys J., De Coninck B. M. A., Cammue B. P. A., De Bolle M. F. C. ( 2008). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950 [View Article][PubMed]
    [Google Scholar]
  24. Shoresh M., Harman G. E. ( 2008). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163 [View Article][PubMed]
    [Google Scholar]
  25. Shoresh M., Yedidia I., Chet I. ( 2005). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84 [View Article][PubMed]
    [Google Scholar]
  26. Shoresh M., Harman G. E., Mastouri F. ( 2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43 [View Article][PubMed]
    [Google Scholar]
  27. Stacklies W., Redestig H., Scholz M., Walther D., Selbig J. ( 2007). pcaMethods – a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167 [View Article][PubMed]
    [Google Scholar]
  28. Steinfath M., Groth D., Lisec J., Selbig J. ( 2008). Metabolite profile analysis: from raw data to regression and classification. Physiol Plant 132:150–161 [View Article][PubMed]
    [Google Scholar]
  29. Szabados L., Savouré A. ( 2010). Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97 [View Article][PubMed]
    [Google Scholar]
  30. Tonon G., Kevers C., Faivre-Rampant O., Graziani M., Gaspar T. ( 2004). Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161:701–708 [View Article][PubMed]
    [Google Scholar]
  31. Tucci M., Ruocco M., De Masi L., De Palma M., Lorito M. ( 2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354 [View Article][PubMed]
    [Google Scholar]
  32. Tzin V., Galili G. ( 2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972 [View Article][PubMed]
    [Google Scholar]
  33. Verhagen B. W., Glazebrook J., Zhu T., Chang H. S., van Loon L. C., Pieterse C. M. ( 2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis . Mol Plant Microbe Interact 17:895–908 [View Article][PubMed]
    [Google Scholar]
  34. Xu X., Chen C., Fan B., Chen Z. ( 2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326 [View Article][PubMed]
    [Google Scholar]
  35. Yedidia I., Shoresh M., Kerem Z., Benhamou N., Kapulnik Y., Chet I. ( 2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052621-0
Loading
/content/journal/micro/10.1099/mic.0.052621-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error