1887

Abstract

In the present study we have assessed, by transcriptional and metabolic profiling, the systemic defence response of plants to the leaf pathogen pv. DC3000 () induced by the beneficial fungus T203. Expression analysis (qPCR) of a set of 137 genes related to defence responses showed that T203 root colonization is not associated with major detectable transcriptomic changes in leaves. However, plants challenged with the bacterial pathogen showed quantitative differences in gene expression when pre-inoculated with T203, supporting priming of the plant by this beneficial fungus. Among the defence-related genes affected by T203, lipid transfer protein (LTP)4, which encodes a member of the lipid transfer pathogenesis-related family, is upregulated, whereas the WRKY40 transcription factor, known to contribute to susceptibility to bacterial infection, shows reduced expression. On the other hand, root colonization by this beneficial fungus substantially alters the plant metabolic profile, including significant changes in amino acids, polyamines, sugars and citric acid cycle intermediates. This may in part reflect an increased energy supply required for the activation of plant defences and growth promotion effects mediated by species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052621-0
2012-01-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/139.html?itemId=/content/journal/micro/10.1099/mic.0.052621-0&mimeType=html&fmt=ahah

References

  1. Alfano G., Ivey M. L., Cakir C., Bos J. I., Miller S. A., Madden L. V., Kamoun S., Hoitink H. A.. ( 2007;). Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology97:429–437 [CrossRef][PubMed]
    [Google Scholar]
  2. Bleecker A. B., Kende H.. ( 2000;). Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol16:1–18 [CrossRef][PubMed]
    [Google Scholar]
  3. Bolton M. D., Kolmer J. A., Xu W. W., Garvin D. F.. ( 2008;). Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Mol Plant Microbe Interact21:1515–1527 [CrossRef][PubMed]
    [Google Scholar]
  4. Coruzzi G., Last R.. ( 2000;). Amino acids. Biochemistry and Molecular Biology of Plant358–410 Bucchanan B. B., Gruissem W., Jones R. L.. Rockville, MD: American Society of Plant Physiologists;
    [Google Scholar]
  5. Cuadros-Inostroza A., Caldana C., Redestig H., Kusano M., Lisec J., Peña-Cortés H., Willmitzer L., Hannah M. A.. ( 2009;). TargetSearch – a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics10:428 [CrossRef][PubMed]
    [Google Scholar]
  6. Damodaran P. N., Udaiyan K., Jee H. J.. ( 2010;). Biochemical changes in cotton plants by arbuscular mycorrhizal colonization. Res Biotechnol1:6–14
    [Google Scholar]
  7. Doornbos R., Scwachtje J., van Dongen J. T., Karojet S., Erban A., Kopka J., van Loon L. C., Bakker P. A. H. M.. ( 2009;). Root colonization and induction of systemic resistance by fluorescent Pseudomonas spp. in Arabidopsis: effect on primary metabolites in the leaves. Analysis of rhizosphere bacterial communities in Arabidopsis: impact of plant defense signaling67–80
    [Google Scholar]
  8. Forde B. G., Lea P. J.. ( 2007;). Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot58:2339–2358 [CrossRef][PubMed]
    [Google Scholar]
  9. Gigolashvili T., Berger B., Mock H. P., Müller C., Weisshaar B., Flügge U. I.. ( 2007;). The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana.. Plant J50:886–901 [CrossRef][PubMed]
    [Google Scholar]
  10. Harman G. E.. ( 2011;). Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol189:647–649 [CrossRef][PubMed]
    [Google Scholar]
  11. Kopka J., Schauer N., Krueger S., Birkemeyer C., Usadel B., Bergmüller E., Dörmann P., Weckwerth W., Gibon Y.. & other authors ( 2005;). [email protected]: the Golm Metabolome Database. Bioinformatics21:1635–1638 [CrossRef][PubMed]
    [Google Scholar]
  12. Lanquar V., Loqué D., Hörmann F., Yuan L., Bohner A., Engelsberger W. R., Lalonde S., Schulze W. X., von Wirén N., Frommer W. B.. ( 2009;). Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell21:3610–3622 [CrossRef][PubMed]
    [Google Scholar]
  13. Libault M., Wan J., Czechowski T., Udvardi M., Stacey G.. ( 2007;). Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact20:900–911 [CrossRef][PubMed]
    [Google Scholar]
  14. Lisec J., Schauer N., Kopka J., Willmitzer L., Fernie A. R.. ( 2006;). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc1:387–396 [CrossRef][PubMed]
    [Google Scholar]
  15. Lorito M., Woo S. L., Harman G. E., Monte E.. ( 2010;). Translational research on Trichoderma: from ’omics to the field. Annu Rev Phytopathol48:395–417 [CrossRef][PubMed]
    [Google Scholar]
  16. Perchepied L., Kroj T., Tronchet M., Loudet O., Roby D.. ( 2006;). Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. PLoS ONE1:e123 [CrossRef][PubMed]
    [Google Scholar]
  17. Roine E., Wei W., Yuan J., Nurmiaho-Lassila E. L., Kalkkinen N., Romantschuk M., He S. Y.. ( 1997;). Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A94:3459–3464 [CrossRef][PubMed]
    [Google Scholar]
  18. Samuels G. J., Ismaiel A., Bon M. C., De Respinis S., Petrini O.. ( 2010;). Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia102:944–966 [CrossRef][PubMed]
    [Google Scholar]
  19. Sarjala T., Niemi K., Häggman H.. ( 2010;). Mycorrhiza formation is not needed for early growth induction and growth-related changes in polyamines in Scots pine seedlings in vitro. Plant Physiol Biochem48:596–601 [CrossRef][PubMed]
    [Google Scholar]
  20. Sarosh B. R., Sivaramakrishnan S., Shetty H. S.. ( 2005;). Elicitation of defense related enzymes and resistance by l-methionine in pearl millet against downy mildew disease caused by Sclerospora graminicola. Plant Physiol Biochem43:808–815 [CrossRef][PubMed]
    [Google Scholar]
  21. Segarra G., Casanova E., Bellido D., Odena M. A., Oliveira E., Trillas I.. ( 2007;). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics7:3943–3952 [CrossRef][PubMed]
    [Google Scholar]
  22. Segarra G., Van der Ent S., Trillas I., Pieterse C. M. J.. ( 2009;). MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol (Stuttg)11:90–96 [CrossRef][PubMed]
    [Google Scholar]
  23. Sels J., Mathys J., De Coninck B. M. A., Cammue B. P. A., De Bolle M. F. C.. ( 2008;). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem46:941–950 [CrossRef][PubMed]
    [Google Scholar]
  24. Shoresh M., Harman G. E.. ( 2008;). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol147:2147–2163 [CrossRef][PubMed]
    [Google Scholar]
  25. Shoresh M., Yedidia I., Chet I.. ( 2005;). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology95:76–84 [CrossRef][PubMed]
    [Google Scholar]
  26. Shoresh M., Harman G. E., Mastouri F.. ( 2010;). Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol48:21–43 [CrossRef][PubMed]
    [Google Scholar]
  27. Stacklies W., Redestig H., Scholz M., Walther D., Selbig J.. ( 2007;). pcaMethods – a bioconductor package providing PCA methods for incomplete data. Bioinformatics23:1164–1167 [CrossRef][PubMed]
    [Google Scholar]
  28. Steinfath M., Groth D., Lisec J., Selbig J.. ( 2008;). Metabolite profile analysis: from raw data to regression and classification. Physiol Plant132:150–161 [CrossRef][PubMed]
    [Google Scholar]
  29. Szabados L., Savouré A.. ( 2010;). Proline: a multifunctional amino acid. Trends Plant Sci15:89–97 [CrossRef][PubMed]
    [Google Scholar]
  30. Tonon G., Kevers C., Faivre-Rampant O., Graziani M., Gaspar T.. ( 2004;). Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol161:701–708 [CrossRef][PubMed]
    [Google Scholar]
  31. Tucci M., Ruocco M., De Masi L., De Palma M., Lorito M.. ( 2011;). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol12:341–354 [CrossRef][PubMed]
    [Google Scholar]
  32. Tzin V., Galili G.. ( 2010;). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant3:956–972 [CrossRef][PubMed]
    [Google Scholar]
  33. Verhagen B. W., Glazebrook J., Zhu T., Chang H. S., van Loon L. C., Pieterse C. M.. ( 2004;). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact17:895–908 [CrossRef][PubMed]
    [Google Scholar]
  34. Xu X., Chen C., Fan B., Chen Z.. ( 2006;). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell18:1310–1326 [CrossRef][PubMed]
    [Google Scholar]
  35. Yedidia I., Shoresh M., Kerem Z., Benhamou N., Kapulnik Y., Chet I.. ( 2003;). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol69:7343–7353 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052621-0
Loading
/content/journal/micro/10.1099/mic.0.052621-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error