1887

Abstract

Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052571-0
2011-12-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3256.html?itemId=/content/journal/micro/10.1099/mic.0.052571-0&mimeType=html&fmt=ahah

References

  1. Abachin E., Poyart C., Pellegrini E., Milohanic E., Fiedler F., Berche P., Trieu-Cuot P.. ( 2002;). Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes . Mol Microbiol43:1–14 [CrossRef][PubMed]
    [Google Scholar]
  2. Birri D. J., Brede D. A., Forberg T., Holo H., Nes I. F.. ( 2010;). Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants. Appl Environ Microbiol76:483–492 [CrossRef][PubMed]
    [Google Scholar]
  3. Borrero J., Jiménez J. J., Gútiez L., Herranz C., Cintas L. M., Hernández P. E.. ( 2011a;). Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis . Appl Microbiol Biotechnol89:131–143 [CrossRef][PubMed]
    [Google Scholar]
  4. Borrero J., Brede D. A., Skaugen M., Diep D. B., Herranz C., Nes I. F., Cintas L. M., Hernández P. E.. ( 2011b;). Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol77:369–373 [CrossRef][PubMed]
    [Google Scholar]
  5. Campelo A. B., Gaspar P., Roces C., Rodríguez A., Kok J., Kuipers O. P., Neves A. R., Martínez B.. ( 2011;). The Lcn972-bacteriocin plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis . Appl Environ Microbiolhttp://dx.doi.org/10.1128/AEM.06107-11 [CrossRef][PubMed]
    [Google Scholar]
  6. Collins B., Curtis N., Cotter P. D., Hill C., Ross R. P.. ( 2010;). The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother54:4416–4423 [CrossRef][PubMed]
    [Google Scholar]
  7. Cotter P. D., Hill C., Ross R. P.. ( 2005;). Bacteriocins: developing innate immunity for food. Nat Rev Microbiol3:777–788 [CrossRef][PubMed]
    [Google Scholar]
  8. Criado R., Diep D. B., Aakra A., Gutiérrez J., Nes I. F., Hernández P. E., Cintas L. M.. ( 2006;). Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bacteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. Appl Environ Microbiol72:6653–6666 [CrossRef][PubMed]
    [Google Scholar]
  9. Dalet K., Briand C., Cenatiempo Y., Héchard Y.. ( 2000;). The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol41:441–443 [CrossRef][PubMed]
    [Google Scholar]
  10. Dalet K., Cenatiempo Y., Cossart P., Héchard Y.. European Listeria Genome Consortium ( 2001;). A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology147:3263–3269[PubMed]
    [Google Scholar]
  11. de Jong A., van Heel A. J., Kok J., Kuipers O. P.. ( 2010;). BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res38:Web Server issueW647–W651 [CrossRef][PubMed]
    [Google Scholar]
  12. De Vuyst L., Leroy F.. ( 2007;). Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol13:194–199 [CrossRef][PubMed]
    [Google Scholar]
  13. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V. et al. & other authors ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res36:Web Server issueW465–W469 [CrossRef][PubMed]
    [Google Scholar]
  14. Diaz M., Valdivia E., Martínez-Bueno M., Fernández M., Soler-González A. S., Ramírez-Rodrigo H., Maqueda M.. ( 2003;). Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl Environ Microbiol69:1229–1236 [CrossRef][PubMed]
    [Google Scholar]
  15. Diep D. B., Håvarstein L. S., Nes I. F.. ( 1995;). A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol18:631–639 [CrossRef][PubMed]
    [Google Scholar]
  16. Diep D. B., Godager L., Brede D., Nes I. F.. ( 2006;). Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology152:1649–1659 [CrossRef][PubMed]
    [Google Scholar]
  17. Diep D. B., Skaugen M., Salehian Z., Holo H., Nes I. F.. ( 2007;). Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A104:2384–2389 [CrossRef][PubMed]
    [Google Scholar]
  18. Dirix G., Monsieurs P., Marchal K., Vanderleyden J., Michiels J.. ( 2004;). Screening genomes of Gram-positive bacteria for double-glycine-motif-containing peptides. Microbiology150:1121–1126 [CrossRef][PubMed]
    [Google Scholar]
  19. Drider D., Fimland G., Héchard Y., McMullen L. M., Prévost H.. ( 2006;). The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev70:564–582 [CrossRef][PubMed]
    [Google Scholar]
  20. Eijsink V. G., Skeie M., Middelhoven P. H., Brurberg M. B., Nes I. F.. ( 1998;). Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol64:3275–3281[PubMed]
    [Google Scholar]
  21. Field D., Connor P. M., Cotter P. D., Hill C., Ross R. P.. ( 2008;). The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol Microbiol69:218–230 [CrossRef][PubMed]
    [Google Scholar]
  22. Fimland G., Jack R., Jung G., Nes I. F., Nissen-Meyer J.. ( 1998;). The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C terminus. Appl Environ Microbiol64:5057–5060[PubMed]
    [Google Scholar]
  23. Fimland G., Eijsink V. G., Nissen-Meyer J.. ( 2002a;). Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology148:3661–3670[PubMed]
    [Google Scholar]
  24. Fimland G., Eijsink V. G., Nissen-Meyer J.. ( 2002b;). Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry41:9508–9515 [CrossRef][PubMed]
    [Google Scholar]
  25. Fimland G., Pirneskoski J., Kaewsrichan J., Jutila A., Kristiansen P. E., Kinnunen P. K., Nissen-Meyer J.. ( 2006;). Mutational analysis and membrane-interactions of the β-sheet-like N-terminal domain of the pediocin-like antimicrobial peptide sakacin P. Biochim Biophys Acta1764:1132–1140[PubMed][CrossRef]
    [Google Scholar]
  26. Fregeau Gallagher N. L., Sailer M., Niemczura W. P., Nakashima T. T., Stiles M. E., Vederas J. C.. ( 1997;). Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry36:15062–15072 [CrossRef][PubMed]
    [Google Scholar]
  27. Gajic O., Buist G., Kojic M., Topisirovic L., Kuipers O. P., Kok J.. ( 2003;). Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J Biol Chem278:34291–34298 [CrossRef][PubMed]
    [Google Scholar]
  28. Gálvez A., Abriouel H., López R. L., Ben Omar N.. ( 2007;). Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol120:51–70 [CrossRef][PubMed]
    [Google Scholar]
  29. Gillor O., Ghazaryan L.. ( 2007;). Recent advances in bacteriocin application as antimicrobials. Recent Pat Antiinfect Drug Discov2:115–122 [CrossRef][PubMed]
    [Google Scholar]
  30. Gravesen A., Jydegaard Axelsen A. M., Mendes da Silva J., Hansen T. B., Knøchel S.. ( 2002a;). Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes . Appl Environ Microbiol68:756–764 [CrossRef][PubMed]
    [Google Scholar]
  31. Gravesen A., Ramnath M., Rechinger K. B., Andersen N., Jänsch L., Héchard Y., Hastings J. W., Knøchel S.. ( 2002b;). High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes . Microbiology148:2361–2369[PubMed]
    [Google Scholar]
  32. Gravesen A., Kallipolitis B., Holmstrøm K., Høiby P. E., Ramnath M., Knøchel S.. ( 2004;). pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol70:1669–1679 [CrossRef][PubMed]
    [Google Scholar]
  33. Guiral S., Mitchell T. J., Martin B., Claverys J. P.. ( 2005;). Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci U S A102:8710–8715 [CrossRef][PubMed]
    [Google Scholar]
  34. Hancock R. E., Chapple D. S.. ( 1999;). Peptide antibiotics. Antimicrob Agents Chemother43:1317–1323[PubMed]
    [Google Scholar]
  35. Haugen H. S., Fimland G., Nissen-Meyer J., Kristiansen P. E.. ( 2005;). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A. Biochemistry44:16149–16157 [CrossRef][PubMed]
    [Google Scholar]
  36. Haugen H. S., Kristiansen P. E., Fimland G., Nissen-Meyer J.. ( 2008;). Mutational analysis of the class IIa bacteriocin curvacin A and its orientation in target cell membranes. Appl Environ Microbiol74:6766–6773 [CrossRef][PubMed]
    [Google Scholar]
  37. Haugen H. S., Fimland G., Nissen-Meyer J.. ( 2011;). Mutational analysis of residues in the helical region of the class IIa bacteriocin pediocin PA-1. Appl Environ Microbiol77:1966–1972 [CrossRef][PubMed]
    [Google Scholar]
  38. Héchard Y., Pelletier C., Cenatiempo Y., Frère J.. ( 2001;). Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology147:1575–1580[PubMed]
    [Google Scholar]
  39. Holo H., Nilssen O., Nes I. F.. ( 1991;). Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol173:3879–3887[PubMed]
    [Google Scholar]
  40. Hu C. B., Malaphan W., Zendo T., Nakayama J., Sonomoto K.. ( 2010;). Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol76:4542–4545 [CrossRef][PubMed]
    [Google Scholar]
  41. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J.. ( 2010;). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11:119 [CrossRef][PubMed]
    [Google Scholar]
  42. Jack R. W., Tagg J. R., Ray B.. ( 1995;). Bacteriocins of gram-positive bacteria. Microbiol Rev59:171–200[PubMed]
    [Google Scholar]
  43. Johnsen L., Fimland G., Nissen-Meyer J.. ( 2005;). The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem280:9243–9250 [CrossRef][PubMed]
    [Google Scholar]
  44. Kelly W. J., Asmundson R. V., Huang C. M.. ( 1996;). Characterisation of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum . J Appl Bacteriol81:657–662
    [Google Scholar]
  45. Kemperman R., Kuipers A., Karsens H., Nauta A., Kuipers O., Kok J.. ( 2003;). Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol69:1589–1597 [CrossRef][PubMed]
    [Google Scholar]
  46. Kjos M., Nes I. F., Diep D. B.. ( 2009;). Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology155:2949–2961 [CrossRef][PubMed]
    [Google Scholar]
  47. Kjos M., Salehian Z., Nes I. F., Diep D. B.. ( 2010;). An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol192:5906–5913 [CrossRef][PubMed]
    [Google Scholar]
  48. Kjos M., Nes I. F., Diep D. B.. ( 2011;). Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl Environ Microbiol77:3335–3342 [CrossRef][PubMed]
    [Google Scholar]
  49. Leisner M., Stingl K., Frey E., Maier B.. ( 2008;). Stochastic switching to competence. Curr Opin Microbiol11:553–559 [CrossRef][PubMed]
    [Google Scholar]
  50. Lux T., Nuhn M., Hakenbeck R., Reichmann P.. ( 2007;). Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae . J Bacteriol189:7741–7751 [CrossRef][PubMed]
    [Google Scholar]
  51. McBride S. M., Sonenshein A. L.. ( 2011;). Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile . Infect Immun79:167–176 [CrossRef][PubMed]
    [Google Scholar]
  52. Miller K. W., Schamber R., Chen Y., Ray B.. ( 1998;). Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon. Appl Environ Microbiol64:14–20[PubMed]
    [Google Scholar]
  53. Møretrø T., Naterstad K., Wang E., Aasen I. M., Chaillou S., Zagorec M., Axelsson L.. ( 2005;). Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol156:949–960 [CrossRef][PubMed]
    [Google Scholar]
  54. Naghmouchi K., Kheadr E., Lacroix C., Fliss I.. ( 2007;). Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes . Food Microbiol24:718–727 [CrossRef][PubMed]
    [Google Scholar]
  55. Navarro L., Rojo-Bezares B., Sáenz Y., Díez L., Zarazaga M., Ruiz-Larrea F., Torres C.. ( 2008;). Comparative study of the pln locus of the quorum-sensing regulated bacteriocin-producing L. plantarum J51 strain. Int J Food Microbiol128:390–394 [CrossRef][PubMed]
    [Google Scholar]
  56. Nes I. F., Yoon S.-S., Diep D. B.. ( 2007;). Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol16:675–690
    [Google Scholar]
  57. Nissen-Meyer J., Rogne P., Oppegård C., Haugen H. S., Kristiansen P. E.. ( 2009;). Structure–function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol10:19–37 [CrossRef][PubMed]
    [Google Scholar]
  58. Oman T. J., Boettcher J. M., Wang H., Okalibe X. N., van der Donk W. A.. ( 2011;). Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol7:78–80 [CrossRef][PubMed]
    [Google Scholar]
  59. Oppegård C., Fimland G., Thorbaek L., Nissen-Meyer J.. ( 2007;). Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis. Appl Environ Microbiol73:2931–2938 [CrossRef][PubMed]
    [Google Scholar]
  60. Oppegård C., Schmidt J., Kristiansen P. E., Nissen-Meyer J.. ( 2008;). Mutational analysis of putative helix-helix interacting GxxxG-motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G. Biochemistry47:5242–5249 [CrossRef][PubMed]
    [Google Scholar]
  61. Oppegård C., Emanuelsen L., Thorbek L., Fimland G., Nissen-Meyer J.. ( 2010;). The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin G. Appl Environ Microbiol76:1267–1273 [CrossRef][PubMed]
    [Google Scholar]
  62. Opsata M., Nes I. F., Holo H.. ( 2010;). Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. BMC Microbiol10:224 [CrossRef][PubMed]
    [Google Scholar]
  63. Pei J., Grishin N. V.. ( 2001;). Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem Sci26:275–277 [CrossRef][PubMed]
    [Google Scholar]
  64. Pei J., Mitchell D. A., Dixon J. E., Grishin N. V.. ( 2011;). Expansion of type II CAAX proteases reveals evolutionary origin of γ-secretase subunit APH-1. J Mol Biol410:18–26 [CrossRef][PubMed]
    [Google Scholar]
  65. Piper C., Cotter P. D., Ross R. P., Hill C.. ( 2009;). Discovery of medically significant lantibiotics. Curr Drug Discov Technol6:1–18 [CrossRef][PubMed]
    [Google Scholar]
  66. Postma P. W., Lengeler J. W., Jacobson G. R.. ( 1993;). Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594[PubMed]
    [Google Scholar]
  67. Quadri L. E., Yan L. Z., Stiles M. E., Vederas J. C.. ( 1997;). Effect of amino acid substitutions on the activity of carnobacteriocin B2. Overproduction of the antimicrobial peptide, its engineered variants, and its precursor in Escherichia coli . J Biol Chem272:3384–3388 [CrossRef][PubMed]
    [Google Scholar]
  68. Ramnath M., Beukes M., Tamura K., Hastings J. W.. ( 2000;). Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol66:3098–3101 [CrossRef][PubMed]
    [Google Scholar]
  69. Ramnath M., Arous S., Gravesen A., Hastings J. W., Héchard Y.. ( 2004;). Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis . Microbiology150:2663–2668 [CrossRef][PubMed]
    [Google Scholar]
  70. Rea M. C., Dobson A., O’Sullivan O., Crispie F., Fouhy F., Cotter P. D., Shanahan F., Kiely B., Hill C., Ross R. P.. ( 2011;). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A108:Suppl. 14639–4644 [CrossRef][PubMed]
    [Google Scholar]
  71. Robichon D., Gouin E., Débarbouillé M., Cossart P., Cenatiempo Y., Héchard Y.. ( 1997;). The rpoN54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides . J Bacteriol179:7591–7594[PubMed]
    [Google Scholar]
  72. Saier M. H., Hvorup R. N., Barabote R. D.. ( 2005;). Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans33:220–224 [CrossRef][PubMed]
    [Google Scholar]
  73. Sedgley C. M., Clewell D. B., Flannagan S. E.. ( 2009;). Plasmid pAMS1-encoded, bacteriocin-related “siblicide” in Enterococcus faecalis . J Bacteriol191:3183–3188 [CrossRef][PubMed]
    [Google Scholar]
  74. Soliman W., Wang L., Bhattacharjee S., Kaur K.. ( 2011;). Structure–activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins. J Med Chem54:2399–2408 [CrossRef][PubMed]
    [Google Scholar]
  75. Sprules T., Kawulka K. E., Vederas J. C.. ( 2004;). NMR solution structure of ImB2, a protein conferring immunity to antimicrobial activity of the type IIa bacteriocin, carnobacteriocin B2. Biochemistry43:11740–11749 [CrossRef][PubMed]
    [Google Scholar]
  76. Stepper J., Shastri S., Loo T. S., Preston J. C., Novak P., Man P., Moore C. H., Havlíček V., Patchett M. L., Norris G. E.. ( 2011;). Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett585:645–650 [CrossRef][PubMed]
    [Google Scholar]
  77. Tessema G. T., Møretrø T., Kohler A., Axelsson L., Naterstad K.. ( 2009;). Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Appl Environ Microbiol75:6973–6980 [CrossRef][PubMed]
    [Google Scholar]
  78. Tominaga T., Hatakeyama Y.. ( 2006;). Determination of essential and variable residues in pediocin PA-1 by NNK scanning. Appl Environ Microbiol72:1141–1147 [CrossRef][PubMed]
    [Google Scholar]
  79. Tominaga T., Hatakeyama Y.. ( 2007;). Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl Environ Microbiol73:5292–5299 [CrossRef][PubMed]
    [Google Scholar]
  80. Uteng M., Hauge H. H., Markwick P. R., Fimland G., Mantzilas D., Nissen-Meyer J., Muhle-Goll C.. ( 2003;). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry42:11417–11426 [CrossRef][PubMed]
    [Google Scholar]
  81. Vadyvaloo V., Hastings J. W., van der Merwe M. J., Rautenbach M.. ( 2002;). Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol68:5223–5230 [CrossRef][PubMed]
    [Google Scholar]
  82. Vadyvaloo V., Snoep J. L., Hastings J. W., Rautenbach M.. ( 2004a;). Physiological implications of class IIa bacteriocin resistance in Listeria monocytogenes strains. Microbiology150:335–340 [CrossRef][PubMed]
    [Google Scholar]
  83. Vadyvaloo V., Arous S., Gravesen A., Héchard Y., Chauhan-Haubrock R., Hastings J. W., Rautenbach M.. ( 2004b;). Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology150:3025–3033 [CrossRef][PubMed]
    [Google Scholar]
  84. Venema K., Haverkort R. E., Abee T., Haandrikman A. J., Leenhouts K. J., de Leij L., Venema G., Kok J.. ( 1994;). Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol14:521–532 [CrossRef][PubMed]
    [Google Scholar]
  85. Vu-Khac H., Miller K. W.. ( 2009;). Regulation of mannose phosphotransferase system permease and virulence gene expression in Listeria monocytogenes by the . transporter. Appl Environ Microbiol75:6671–6678 [CrossRef][PubMed]
    [Google Scholar]
  86. Xue J., Miller K. W.. ( 2007;). Regulation of the mpt operon in Listeria innocua by the ManR protein. Appl Environ Microbiol73:5648–5652 [CrossRef][PubMed]
    [Google Scholar]
  87. Yan L. Z., Gibbs A. C., Stiles M. E., Wishart D. S., Vederas J. C.. ( 2000;). Analogues of bacteriocins: antimicrobial specificity and interactions of leucocin A with its enantiomer, carnobacteriocin B2, and truncated derivatives. J Med Chem43:4579–4581 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052571-0
Loading
/content/journal/micro/10.1099/mic.0.052571-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error