regulates carbon catabolism, sporulation, fumonisin B production and pathogenesis in Free

Abstract

In , a ubiquitous pathogen of maize, virulence and mycotoxigenesis are regulated in response to the types and amounts of carbohydrates present in maize kernels. In this study, we investigated the role of a putative hexokinase-encoding gene () in growth, development and pathogenesis. A deletion mutant (Δ) of was not able to grow when supplied with fructose as the sole carbon source, and growth was impaired when glucose, sucrose or maltotriose was provided. Additionally, the Δ mutant produced unusual swollen hyphae when provided with fructose, but not glucose, as the sole carbon source. Moreover, the Δ mutant was impaired in fructose uptake, although glucose uptake was unaffected. On maize kernels, the Δ mutant was substantially less virulent than the wild-type, but virulence on maize stalks was not impaired, possibly indicating a metabolic response to tissue-specific differences in plant carbohydrate content. Finally, disruption of had a pronounced effect on fungal metabolites produced during colonization of maize kernels; the Δ mutant produced approximately 50 % less trehalose and 80 % less fumonisin B (FB) than the wild-type. The reduction in trehalose biosynthesis likely explains observations of increased sensitivity to osmotic stress in the Δ mutant. In summary, this study links early events in carbohydrate sensing and glycolysis to virulence and secondary metabolism in , and thus provides a new foothold from which the genetic regulatory networks that underlie pathogenesis and mycotoxigenesis can be unravelled and defined.

Funding
This study was supported by the:
  • Arkansas Center for Plant Powered Production
  • Arkansas Biosciences Institute
  • USDA/NIFA/AFRI (Award 10-65108-20567)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052506-0
2011-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2658.html?itemId=/content/journal/micro/10.1099/mic.0.052506-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Bhatnagar D., Ehrlich K. C., Cleveland T. E. ( 2003). Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol 61:83–93[PubMed] [CrossRef]
    [Google Scholar]
  3. Bluhm B. H., Woloshuk C. P. ( 2005). Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact 18:1333–1339 [View Article][PubMed]
    [Google Scholar]
  4. Bluhm B. H., Kim H., Butchko R. A. E., Woloshuk C. P. ( 2008). Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol 9:203–211 [View Article][PubMed]
    [Google Scholar]
  5. Brown D. W., Butchko R. A., Busman M., Proctor R. H. ( 2007). The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6:1210–1218 [View Article][PubMed]
    [Google Scholar]
  6. Claeyssen E., Rivoal J. ( 2007). Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68:709–731 [View Article][PubMed]
    [Google Scholar]
  7. Desai K., Sullards M. C., Allegood J., Wang E., Schmelz E. M., Hartl M., Humpf H. U., Liotta D. C., Peng Q., Merrill A. H. Jr ( 2002). Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta 1585:188–192[PubMed] [CrossRef]
    [Google Scholar]
  8. Doehlemann G., Berndt P., Hahn M. ( 2006). Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea . Microbiology 152:2625–2634 [View Article][PubMed]
    [Google Scholar]
  9. Fillinger S., Chaveroche M. K., van Dijck P., de Vries R., Ruijter G., Thevelein J., d’Enfert C. ( 2001). Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans . Microbiology 147:1851–1862[PubMed]
    [Google Scholar]
  10. Flaherty J. E., Woloshuk C. P. ( 2004). Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1 . Appl Environ Microbiol 70:2653–2659 [View Article][PubMed]
    [Google Scholar]
  11. Flaherty J. E., Pirttilä A. M., Bluhm B. H., Woloshuk C. P. ( 2003). PAC1, a pH-regulatory gene from Fusarium verticillioides . Appl Environ Microbiol 69:5222–5227 [View Article][PubMed]
    [Google Scholar]
  12. Fleck C. B., Brock M. ( 2010). Aspergillus fumigatus catalytic glucokinase and hexokinase: expression analysis and importance for germination, growth, and conidiation. Eukaryot Cell 9:1120–1135 [View Article][PubMed]
    [Google Scholar]
  13. Flipphi M., van de Vondervoort P. J., Ruijter G. J., Visser J., Arst H. N. Jr, Felenbok B. ( 2003). Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem 278:11849–11857 [View Article][PubMed]
    [Google Scholar]
  14. Foster A. J., Jenkinson J. M., Talbot N. J. ( 2003). Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea . EMBO J 22:225–235 [View Article][PubMed]
    [Google Scholar]
  15. Gadd G. M., Chalmers K., Reed R. H. ( 1987). The role of trehalose in dehydration resistance of Saccharomyces cerevisiae . FEMS Microbiol Lett 48:249–254 [View Article]
    [Google Scholar]
  16. Gerber R., Lou L., Huffman J., Zhu X., Lin T., Li L. Q., Arreguin I., Butchko R. A. E., Proctor R. H., Du L. ( 2009). Advances in understanding the biosynthesis of fumonisins. Mycotoxin Prevention and Control in Agriculture167–182 Appell M., Kendra D. F., Truckses M. W. Washington, DC: American Chemical Society;
    [Google Scholar]
  17. Harrington G. N., Bush D. R. ( 2003). The bifunctional role of hexokinase in metabolism and glucose signaling. Plant Cell 15:2493–2496 [View Article][PubMed]
    [Google Scholar]
  18. Hendricks K. A., Simpson J. S., Larsen R. D. ( 1999). Neural tube defects along the Texas-Mexico border, 1993–1995. Am J Epidemiol 149:1119–1127[PubMed] [CrossRef]
    [Google Scholar]
  19. Hohmann S., Winderickx J., de Winde J. H., Valckx D., Cobbaert P., Luyten K., de Meirsman C., Ramos J., Thevelein J. M. ( 1999). Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2 . Microbiology 145:703–714 [View Article][PubMed]
    [Google Scholar]
  20. Hounsa C. G., Brandt E. V., Thevelein J., Hohmann S., Prior B. A. ( 1998). Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680 [View Article][PubMed]
    [Google Scholar]
  21. Keller S. E., Sullivan T. M. ( 1996). Liquid culture methods for the production of fumonisin. Adv Exp Med Biol 392:205–212[PubMed]
    [Google Scholar]
  22. Kim H., Woloshuk C. P. ( 2008). Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides . Fungal Genet Biol 45:947–953 [View Article][PubMed]
    [Google Scholar]
  23. Kim H., Woloshuk C. P. ( 2011). Functional characterization of fst1 in Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact 24:18–24 [View Article][PubMed]
    [Google Scholar]
  24. Kraakman L. S., Winderickx J., Thevelein J. M., De Winde J. H. ( 1999). Structure–function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochem J 343:159–168 [View Article][PubMed]
    [Google Scholar]
  25. Kuettner E. B., Kettner K., Keim A., Svergun D. I., Volke D., Singer D., Hoffmann R., Müller E. C., Otto A. et al. ( 2010). Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization. J Biol Chem 285:41019–41033 [View Article][PubMed]
    [Google Scholar]
  26. Lafon A., Seo J. A., Han K. H., Yu J. H., d’Enfert C. ( 2005). The heterotrimeric G-protein GanB(α)-SfaD(β)-GpgA(γ) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans . Genetics 171:71–80 [View Article][PubMed]
    [Google Scholar]
  27. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007). clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  28. Laurentin A., Edwards C. A. ( 2003). A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem 315:143–145 [View Article][PubMed]
    [Google Scholar]
  29. Lewis J. G., Learmonth R. P., Watson K. ( 1995). Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae . Microbiology 141:687–694 [View Article][PubMed]
    [Google Scholar]
  30. Moore B., Zhou L., Rolland F., Hall Q., Cheng W. H., Liu Y. X., Hwang I., Jones T., Sheen J. ( 2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336 [View Article][PubMed]
    [Google Scholar]
  31. Nelson P. E., Desjardins A. E., Plattner R. D. ( 1993). Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol 31:233–252 [View Article][PubMed]
    [Google Scholar]
  32. Ngamskulrungroj P., Himmelreich U., Breger J. A., Wilson C., Chayakulkeeree M., Krockenberger M. B., Malik R., Daniel H. M., Toffaletti D. et al. ( 2009). The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii . Infect Immun 77:4584–4596 [View Article][PubMed]
    [Google Scholar]
  33. Ozcan S., Dover J., Johnston M. ( 1998). Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae . EMBO J 17:2566–2573 [View Article][PubMed]
    [Google Scholar]
  34. Proctor R. H., Brown D. W., Plattner R. D., Desjardins A. E. ( 2003). Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis . Fungal Genet Biol 38:237–249 [View Article][PubMed]
    [Google Scholar]
  35. Rheeder J. P., Marasas W. F., Vismer H. F. ( 2002). Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68:2101–2105 [View Article][PubMed]
    [Google Scholar]
  36. Ritchie S. W., Hanway J. J., Benson G. O. ( 1993). How a Corn Plant Develops Ames, IA: Iowa State University Extension;
    [Google Scholar]
  37. Romano A. H. ( 1982). Facilitated diffusion of 6-deoxy-d-glucose in bakers’ yeast: evidence against phosphorylation-associated transport of glucose. J Bacteriol 152:1295–1297[PubMed]
    [Google Scholar]
  38. Rui O., Hahn M. ( 2007). The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Microbiology 153:2791–2802 [View Article][PubMed]
    [Google Scholar]
  39. Santangelo G. M. ( 2006). Glucose signaling in Saccharomyces cerevisiae . Microbiol Mol Biol Rev 70:253–282 [View Article][PubMed]
    [Google Scholar]
  40. Shim W. B., Woloshuk C. P. ( 1999). Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi . FEMS Microbiol Lett 177:109–116 [View Article][PubMed]
    [Google Scholar]
  41. Shim W. B., Woloshuk C. P. ( 2001). Regulation of fumonisin B1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1 . Appl Environ Microbiol 67:1607–1612 [View Article][PubMed]
    [Google Scholar]
  42. Shim W. B., Flaherty J. E., Woloshuk C. P. ( 2003). Comparison of fumonisin B1 biosynthesis in maize germ and degermed kernels by Fusarium verticillioides . J Food Prot 66:2116–2122[PubMed]
    [Google Scholar]
  43. Smith J. E., Bluhm B. H. ( 2011). Metabolic fingerprinting in Fusarium verticillioides to determine gene function. Fungal Genomics: Methods in Molecular Biology237–247 Xu J. R., Bluhm B. H. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  44. Smith J. E., Lay J. O., Bluhm B. H. ( 2011). Metabolic fingerprinting reveals a new genetic linkage between ambient pH and metabolites associated with desiccation tolerance in Fusarium verticillioides . Metabolomics [View Article]
    [Google Scholar]
  45. Thevelein J. M. ( 1984). Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59[PubMed]
    [Google Scholar]
  46. Thevelein J. M., Hohmann S. ( 1995). Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends Biochem Sci 20:3–10 [View Article][PubMed]
    [Google Scholar]
  47. Warfield C. Y., Gilchrist D. G. ( 1999). Influence of kernel age on fumonisin B1 production in maize by Fusarium moniliforme . Appl Environ Microbiol 65:2853–2856[PubMed]
    [Google Scholar]
  48. Wilson J. E. ( 2003). Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057 [View Article][PubMed]
    [Google Scholar]
  49. Wilson R. A., Jenkinson J. M., Gibson R. P., Littlechild J. A., Wang Z. Y., Talbot N. J. ( 2007). Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685 [View Article][PubMed]
    [Google Scholar]
  50. Xiao W., Sheen J., Jang J. C. ( 2000). The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461 [View Article][PubMed]
    [Google Scholar]
  51. Yu J. H., Hamari Z., Han K. H., Seo J. A., Reyes-Domínguez Y., Scazzocchio C. ( 2004). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052506-0
Loading
/content/journal/micro/10.1099/mic.0.052506-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed