1887

Abstract

In , a ubiquitous pathogen of maize, virulence and mycotoxigenesis are regulated in response to the types and amounts of carbohydrates present in maize kernels. In this study, we investigated the role of a putative hexokinase-encoding gene () in growth, development and pathogenesis. A deletion mutant (Δ) of was not able to grow when supplied with fructose as the sole carbon source, and growth was impaired when glucose, sucrose or maltotriose was provided. Additionally, the Δ mutant produced unusual swollen hyphae when provided with fructose, but not glucose, as the sole carbon source. Moreover, the Δ mutant was impaired in fructose uptake, although glucose uptake was unaffected. On maize kernels, the Δ mutant was substantially less virulent than the wild-type, but virulence on maize stalks was not impaired, possibly indicating a metabolic response to tissue-specific differences in plant carbohydrate content. Finally, disruption of had a pronounced effect on fungal metabolites produced during colonization of maize kernels; the Δ mutant produced approximately 50 % less trehalose and 80 % less fumonisin B (FB) than the wild-type. The reduction in trehalose biosynthesis likely explains observations of increased sensitivity to osmotic stress in the Δ mutant. In summary, this study links early events in carbohydrate sensing and glycolysis to virulence and secondary metabolism in , and thus provides a new foothold from which the genetic regulatory networks that underlie pathogenesis and mycotoxigenesis can be unravelled and defined.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052506-0
2011-09-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2658.html?itemId=/content/journal/micro/10.1099/mic.0.052506-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  2. Bhatnagar D., Ehrlich K. C., Cleveland T. E.. ( 2003;). Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol61:83–93[PubMed][CrossRef]
    [Google Scholar]
  3. Bluhm B. H., Woloshuk C. P.. ( 2005;). Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact18:1333–1339 [CrossRef][PubMed]
    [Google Scholar]
  4. Bluhm B. H., Kim H., Butchko R. A. E., Woloshuk C. P.. ( 2008;). Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol9:203–211 [CrossRef][PubMed]
    [Google Scholar]
  5. Brown D. W., Butchko R. A., Busman M., Proctor R. H.. ( 2007;). The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell6:1210–1218 [CrossRef][PubMed]
    [Google Scholar]
  6. Claeyssen E., Rivoal J.. ( 2007;). Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry68:709–731 [CrossRef][PubMed]
    [Google Scholar]
  7. Desai K., Sullards M. C., Allegood J., Wang E., Schmelz E. M., Hartl M., Humpf H. U., Liotta D. C., Peng Q., Merrill A. H. Jr. ( 2002;). Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta1585:188–192[PubMed][CrossRef]
    [Google Scholar]
  8. Doehlemann G., Berndt P., Hahn M.. ( 2006;). Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea . Microbiology152:2625–2634 [CrossRef][PubMed]
    [Google Scholar]
  9. Fillinger S., Chaveroche M. K., van Dijck P., de Vries R., Ruijter G., Thevelein J., d’Enfert C.. ( 2001;). Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans . Microbiology147:1851–1862[PubMed]
    [Google Scholar]
  10. Flaherty J. E., Woloshuk C. P.. ( 2004;). Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1 . Appl Environ Microbiol70:2653–2659 [CrossRef][PubMed]
    [Google Scholar]
  11. Flaherty J. E., Pirttilä A. M., Bluhm B. H., Woloshuk C. P.. ( 2003;). PAC1, a pH-regulatory gene from Fusarium verticillioides . Appl Environ Microbiol69:5222–5227 [CrossRef][PubMed]
    [Google Scholar]
  12. Fleck C. B., Brock M.. ( 2010;). Aspergillus fumigatus catalytic glucokinase and hexokinase: expression analysis and importance for germination, growth, and conidiation. Eukaryot Cell9:1120–1135 [CrossRef][PubMed]
    [Google Scholar]
  13. Flipphi M., van de Vondervoort P. J., Ruijter G. J., Visser J., Arst H. N. Jr, Felenbok B.. ( 2003;). Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem278:11849–11857 [CrossRef][PubMed]
    [Google Scholar]
  14. Foster A. J., Jenkinson J. M., Talbot N. J.. ( 2003;). Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea . EMBO J22:225–235 [CrossRef][PubMed]
    [Google Scholar]
  15. Gadd G. M., Chalmers K., Reed R. H.. ( 1987;). The role of trehalose in dehydration resistance of Saccharomyces cerevisiae . FEMS Microbiol Lett48:249–254 [CrossRef]
    [Google Scholar]
  16. Gerber R., Lou L., Huffman J., Zhu X., Lin T., Li L. Q., Arreguin I., Butchko R. A. E., Proctor R. H., Du L.. ( 2009;). Advances in understanding the biosynthesis of fumonisins. Mycotoxin Prevention and Control in Agriculture167–182 Appell M., Kendra D. F., Truckses M. W.. Washington, DC: American Chemical Society;
    [Google Scholar]
  17. Harrington G. N., Bush D. R.. ( 2003;). The bifunctional role of hexokinase in metabolism and glucose signaling. Plant Cell15:2493–2496 [CrossRef][PubMed]
    [Google Scholar]
  18. Hendricks K. A., Simpson J. S., Larsen R. D.. ( 1999;). Neural tube defects along the Texas-Mexico border, 1993–1995. Am J Epidemiol149:1119–1127[PubMed][CrossRef]
    [Google Scholar]
  19. Hohmann S., Winderickx J., de Winde J. H., Valckx D., Cobbaert P., Luyten K., de Meirsman C., Ramos J., Thevelein J. M.. ( 1999;). Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2 . Microbiology145:703–714 [CrossRef][PubMed]
    [Google Scholar]
  20. Hounsa C. G., Brandt E. V., Thevelein J., Hohmann S., Prior B. A.. ( 1998;). Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology144:671–680 [CrossRef][PubMed]
    [Google Scholar]
  21. Keller S. E., Sullivan T. M.. ( 1996;). Liquid culture methods for the production of fumonisin. Adv Exp Med Biol392:205–212[PubMed]
    [Google Scholar]
  22. Kim H., Woloshuk C. P.. ( 2008;). Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides . Fungal Genet Biol45:947–953 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim H., Woloshuk C. P.. ( 2011;). Functional characterization of fst1 in Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact24:18–24 [CrossRef][PubMed]
    [Google Scholar]
  24. Kraakman L. S., Winderickx J., Thevelein J. M., De Winde J. H.. ( 1999;). Structure–function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochem J343:159–168 [CrossRef][PubMed]
    [Google Scholar]
  25. Kuettner E. B., Kettner K., Keim A., Svergun D. I., Volke D., Singer D., Hoffmann R., Müller E. C., Otto A. et al. ( 2010;). Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization. J Biol Chem285:41019–41033 [CrossRef][PubMed]
    [Google Scholar]
  26. Lafon A., Seo J. A., Han K. H., Yu J. H., d’Enfert C.. ( 2005;). The heterotrimeric G-protein GanB(α)-SfaD(β)-GpgA(γ) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans . Genetics171:71–80 [CrossRef][PubMed]
    [Google Scholar]
  27. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  28. Laurentin A., Edwards C. A.. ( 2003;). A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem315:143–145 [CrossRef][PubMed]
    [Google Scholar]
  29. Lewis J. G., Learmonth R. P., Watson K.. ( 1995;). Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae . Microbiology141:687–694 [CrossRef][PubMed]
    [Google Scholar]
  30. Moore B., Zhou L., Rolland F., Hall Q., Cheng W. H., Liu Y. X., Hwang I., Jones T., Sheen J.. ( 2003;). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science300:332–336 [CrossRef][PubMed]
    [Google Scholar]
  31. Nelson P. E., Desjardins A. E., Plattner R. D.. ( 1993;). Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol31:233–252 [CrossRef][PubMed]
    [Google Scholar]
  32. Ngamskulrungroj P., Himmelreich U., Breger J. A., Wilson C., Chayakulkeeree M., Krockenberger M. B., Malik R., Daniel H. M., Toffaletti D. et al. ( 2009;). The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii . Infect Immun77:4584–4596 [CrossRef][PubMed]
    [Google Scholar]
  33. Ozcan S., Dover J., Johnston M.. ( 1998;). Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae . EMBO J17:2566–2573 [CrossRef][PubMed]
    [Google Scholar]
  34. Proctor R. H., Brown D. W., Plattner R. D., Desjardins A. E.. ( 2003;). Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis . Fungal Genet Biol38:237–249 [CrossRef][PubMed]
    [Google Scholar]
  35. Rheeder J. P., Marasas W. F., Vismer H. F.. ( 2002;). Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol68:2101–2105 [CrossRef][PubMed]
    [Google Scholar]
  36. Ritchie S. W., Hanway J. J., Benson G. O.. ( 1993;). How a Corn Plant Develops Ames, IA: Iowa State University Extension;
    [Google Scholar]
  37. Romano A. H.. ( 1982;). Facilitated diffusion of 6-deoxy-d-glucose in bakers’ yeast: evidence against phosphorylation-associated transport of glucose. J Bacteriol152:1295–1297[PubMed]
    [Google Scholar]
  38. Rui O., Hahn M.. ( 2007;). The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Microbiology153:2791–2802 [CrossRef][PubMed]
    [Google Scholar]
  39. Santangelo G. M.. ( 2006;). Glucose signaling in Saccharomyces cerevisiae . Microbiol Mol Biol Rev70:253–282 [CrossRef][PubMed]
    [Google Scholar]
  40. Shim W. B., Woloshuk C. P.. ( 1999;). Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi . FEMS Microbiol Lett177:109–116 [CrossRef][PubMed]
    [Google Scholar]
  41. Shim W. B., Woloshuk C. P.. ( 2001;). Regulation of fumonisin B1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1 . Appl Environ Microbiol67:1607–1612 [CrossRef][PubMed]
    [Google Scholar]
  42. Shim W. B., Flaherty J. E., Woloshuk C. P.. ( 2003;). Comparison of fumonisin B1 biosynthesis in maize germ and degermed kernels by Fusarium verticillioides . J Food Prot66:2116–2122[PubMed]
    [Google Scholar]
  43. Smith J. E., Bluhm B. H.. ( 2011;). Metabolic fingerprinting in Fusarium verticillioides to determine gene function. Fungal Genomics: Methods in Molecular Biology237–247 Xu J. R., Bluhm B. H.. Totowa, NJ: Humana Press; [CrossRef]
    [Google Scholar]
  44. Smith J. E., Lay J. O., Bluhm B. H.. ( 2011;). Metabolic fingerprinting reveals a new genetic linkage between ambient pH and metabolites associated with desiccation tolerance in Fusarium verticillioides . Metabolomics [CrossRef]
    [Google Scholar]
  45. Thevelein J. M.. ( 1984;). Regulation of trehalose mobilization in fungi. Microbiol Rev48:42–59[PubMed]
    [Google Scholar]
  46. Thevelein J. M., Hohmann S.. ( 1995;). Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends Biochem Sci20:3–10 [CrossRef][PubMed]
    [Google Scholar]
  47. Warfield C. Y., Gilchrist D. G.. ( 1999;). Influence of kernel age on fumonisin B1 production in maize by Fusarium moniliforme . Appl Environ Microbiol65:2853–2856[PubMed]
    [Google Scholar]
  48. Wilson J. E.. ( 2003;). Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol206:2049–2057 [CrossRef][PubMed]
    [Google Scholar]
  49. Wilson R. A., Jenkinson J. M., Gibson R. P., Littlechild J. A., Wang Z. Y., Talbot N. J.. ( 2007;). Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J26:3673–3685 [CrossRef][PubMed]
    [Google Scholar]
  50. Xiao W., Sheen J., Jang J. C.. ( 2000;). The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol44:451–461 [CrossRef][PubMed]
    [Google Scholar]
  51. Yu J. H., Hamari Z., Han K. H., Seo J. A., Reyes-Domínguez Y., Scazzocchio C.. ( 2004;). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol41:973–981 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052506-0
Loading
/content/journal/micro/10.1099/mic.0.052506-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error