1887

Abstract

The attachment organelles of bacterial species belonging to the phylogenetic cluster are required for host cytadherence, gliding motility and virulence. Despite being closely related, these bacteria possess distinct cellular morphologies and gliding characteristics. The molecular mechanisms for most attachment organelle phenotypes, including shape and ability to power motility, are obscure. The attachment organelle-associated P30 protein of is implicated in both adherence and motility, with mutations negatively impacting cell morphology, adherence, gliding and virulence. To test whether the P30 alleles of different mycoplasma species confer species-specific attachment organelle properties, we created an strain in which the P30 orthologue, P32, was substituted for the native P30. Selected clones were visualized by scanning electron microscopy to assess morphology and by indirect immunofluorescence microscopy to localize P32. Cytadherence ability and gliding motility were assessed by haemadsorption assay and phase-contrast microcinematography, respectively. Cell and attachment organelle morphologies were indistinguishable from wild-type as well as II-3 expressing a C-terminally 6×His-tagged P30 construct. P32 was localized to the tip of the attachment organelle of transformant cells. Although a specific role for P30 in species-specific phenotypes was not identified, this first test of orthologous gene replacement in different mycoplasma species demonstrates that the differences in the and proteins contribute little if anything to the different attachment organelle phenotypes between these species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052464-0
2011-10-01
2020-10-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2862.html?itemId=/content/journal/micro/10.1099/mic.0.052464-0&mimeType=html&fmt=ahah

References

  1. Adan-Kubo J., Uenoyama A., Arata T., Miyata M.. ( 2006;). Morphology of isolated Gli349, a leg protein responsible for Mycoplasma mobile gliding via glass binding, revealed by rotary shadowing electron microscopy. J Bacteriol188:2821–2828 [CrossRef][PubMed]
    [Google Scholar]
  2. Balish M. F.. ( 2006;). Subcellular structures of mycoplasmas. Front Biosci11:2017–2027 [CrossRef][PubMed]
    [Google Scholar]
  3. Balish M. F., Krause D. C.. ( 2005;). Mycoplasma attachment organelle and cell division. Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control189–237 Blanchard A., Browning G.. Norwich: Horizon Bioscience;
    [Google Scholar]
  4. Baseman J. B., Cole R. M., Krause D. C., Leith D. K.. ( 1982;). Molecular basis for cytadsorption of Mycoplasma pneumoniae . J Bacteriol151:1514–1522[PubMed]
    [Google Scholar]
  5. Biberfeld G., Biberfeld P.. ( 1970;). Ultrastructural features of Mycoplasma pneumoniae . J Bacteriol102:855–861[PubMed]
    [Google Scholar]
  6. Burgos R., Pich O. Q., Querol E., Piñol J.. ( 2008;). Deletion of the Mycoplasma genitalium MG_217 gene modifies cell gliding behaviour by altering terminal organelle curvature. Mol Microbiol69:1029–1040 [CrossRef][PubMed]
    [Google Scholar]
  7. Chang H.-Y., Jordan J. L., Krause D. C.. ( 2011;). Domain analysis of protein P30 in Mycoplasma pneumoniae cytadherence and gliding motility. J Bacteriol193:1726–1733 [CrossRef][PubMed]
    [Google Scholar]
  8. Feldner J., Göbel U., Bredt W.. ( 1982;). Mycoplasma pneumoniae adhesin localized to tip structure by monoclonal antibody. Nature298:765–767 [CrossRef][PubMed]
    [Google Scholar]
  9. Göbel U., Speth V., Bredt W.. ( 1981;). Filamentous structures in adherent Mycoplasma pneumoniae cells treated with nonionic detergents. J Cell Biol91:537–543 [CrossRef][PubMed]
    [Google Scholar]
  10. Hasselbring B. M., Krause D. C.. ( 2007;). Cytoskeletal protein P41 is required to anchor the terminal organelle of the wall-less prokaryote Mycoplasma pneumoniae . Mol Microbiol63:44–53 [CrossRef][PubMed]
    [Google Scholar]
  11. Hasselbring B. M., Jordan J. L., Krause D. C.. ( 2005;). Mutant analysis reveals a specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility. J Bacteriol187:6281–6289 [CrossRef][PubMed]
    [Google Scholar]
  12. Hatchel J. M., Balish M. F.. ( 2008;). Attachment organelle ultrastructure correlates with phylogeny, not gliding motility properties, in Mycoplasma pneumoniae relatives. Microbiology154:286–295 [CrossRef][PubMed]
    [Google Scholar]
  13. Hatchel J. M., Balish R. S., Duley M. L., Balish M. F.. ( 2006;). Ultrastructure and gliding motility of Mycoplasma amphoriforme, a possible human respiratory pathogen. Microbiology152:2181–2189 [CrossRef][PubMed]
    [Google Scholar]
  14. Hedreyda C. T., Lee K. K., Krause D. C.. ( 1993;). Transformation of Mycoplasma pneumoniae with Tn4001 by electroporation. Plasmid30:170–175 [CrossRef][PubMed]
    [Google Scholar]
  15. Henderson G. P., Jensen G. J.. ( 2006;). Three-dimensional structure of Mycoplasma pneumoniae’s attachment organelle and a model for its role in gliding motility. Mol Microbiol60:376–385 [CrossRef][PubMed]
    [Google Scholar]
  16. Hu P.-C., Cole R. M., Huang Y. S., Graham J. A., Gardner D. E., Collier A. M., Clyde W. A. Jr. ( 1982;). Mycoplasma pneumoniae infection: role of a surface protein in the attachment organelle. Science216:313–315 [CrossRef][PubMed]
    [Google Scholar]
  17. Jordan J. L., Berry K. M., Balish M. F., Krause D. C.. ( 2001;). Stability and subcellular localization of cytadherence-associated protein P65 in Mycoplasma pneumoniae . J Bacteriol183:7387–7391 [CrossRef][PubMed]
    [Google Scholar]
  18. Jordan J. L., Chang H.-Y., Balish M. F., Holt L. S., Bose S. R., Hasselbring B. M., Waldo R. H. III, Krunkosky T. M., Krause D. C.. ( 2007;). Protein P200 is dispensable for Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of differentiated bronchial epithelium. Infect Immun75:518–522 [CrossRef][PubMed]
    [Google Scholar]
  19. Krause D. C., Leith D. K., Wilson R. M., Baseman J. B.. ( 1982;). Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun35:809–817[PubMed]
    [Google Scholar]
  20. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  21. Meng K. E., Pfister R. M.. ( 1980;). Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol144:390–399[PubMed]
    [Google Scholar]
  22. Miyata M.. ( 2010;). Unique centipede mechanism of Mycoplasma gliding. Annu Rev Microbiol64:519–537 [CrossRef][PubMed]
    [Google Scholar]
  23. Morrison-Plummer J., Leith D. K., Baseman J. B.. ( 1986;). Biological effects of anti-lipid and anti-protein monoclonal antibodies on Mycoplasma pneumoniae . Infect Immun53:398–403[PubMed]
    [Google Scholar]
  24. Nakane D., Adan-Kubo J., Kenri T., Miyata M.. ( 2011;). Isolation and characterization of P1 adhesin, a leg protein of the gliding bacterium Mycoplasma pneumoniae . J Bacteriol193:715–722 [CrossRef][PubMed]
    [Google Scholar]
  25. Proft T., Hilbert H., Layh-Schmitt G., Herrmann R.. ( 1995;). The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. J Bacteriol177:3370–3378[PubMed]
    [Google Scholar]
  26. Razin S., Jacobs E.. ( 1992;). Mycoplasma adhesion. J Gen Microbiol138:407–422[PubMed][CrossRef]
    [Google Scholar]
  27. Razin S. D., Yogev D., Naot Y.. ( 1998;). Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev62:1094–1156[PubMed]
    [Google Scholar]
  28. Reddy S. P., Rasmussen W. G., Baseman J. B.. ( 1995;). Molecular cloning and characterization of an adherence-related operon of Mycoplasma genitalium . J Bacteriol177:5943–5951[PubMed]
    [Google Scholar]
  29. Relich R. F., Friedberg A. J., Balish M. F.. ( 2009;). Novel cellular organization in a gliding mycoplasma, Mycoplasma insons . J Bacteriol191:5312–5314 [CrossRef][PubMed]
    [Google Scholar]
  30. Romero-Arroyo C. E., Jordan J., Peacock S. J., Willby M. J., Farmer M. A., Krause D. C.. ( 1999;). Mycoplasma pneumoniae protein P30 is required for cytadherence and associated with proper cell development. J Bacteriol181:1079–1087[PubMed]
    [Google Scholar]
  31. Seto S., Kenri T., Tomiyama T., Miyata M.. ( 2005;). Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions. J Bacteriol187:1875–1877 [CrossRef][PubMed]
    [Google Scholar]
  32. Seybert A., Herrmann R., Frangakis A. S.. ( 2006;). Structural analysis of Mycoplasma pneumoniae by cryo-electron tomography. J Struct Biol156:342–354 [CrossRef][PubMed]
    [Google Scholar]
  33. Sobeslavsky O., Prescott B., Chanock R. M.. ( 1968;). Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J Bacteriol96:695–705[PubMed]
    [Google Scholar]
  34. Stevens M. K., Krause D. C.. ( 1991;). Localization of the Mycoplasma pneumoniae cytadherence-accessory proteins HMW1 and HMW4 in the cytoskeletonlike Triton shell. J Bacteriol173:1041–1050[PubMed]
    [Google Scholar]
  35. Stevens M. K., Krause D. C.. ( 1992;). Mycoplasma pneumoniae cytadherence phase-variable protein HMW3 is a component of the attachment organelle. J Bacteriol174:4265–4274[PubMed]
    [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J.. ( 1979;). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A76:4350–4354 [CrossRef][PubMed]
    [Google Scholar]
  37. Tully J. G., Rose D. L., Whitcomb R. F., Wenzel R. P.. ( 1979;). Enhanced isolation of Mycoplasma pneumoniae from throat washings with a newly-modified culture medium. J Infect Dis139:478–482 [CrossRef][PubMed]
    [Google Scholar]
  38. Ueno P. M., Timenetsky J., Centonze V. E., Wewer J. J., Cagle M., Stein M. A., Krishnan M., Baseman J. B.. ( 2008;). Interaction of Mycoplasma genitalium with host cells: evidence for nuclear localization. Microbiology154:3033–3041 [CrossRef][PubMed]
    [Google Scholar]
  39. Waites K. B., Talkington D. F.. ( 2004;). Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev17:697–728 [CrossRef][PubMed]
    [Google Scholar]
  40. Waldo R. H. III, Popham P. L., Romero-Arroyo C. E., Mothershed E. A., Lee K. K., Krause D. C.. ( 1999;). Transcriptional analysis of the hmw gene cluster of Mycoplasma pneumoniae . J Bacteriol181:4978–4985[PubMed]
    [Google Scholar]
  41. Zimmerman C. U., Herrmann R.. ( 2005;). Synthesis of a small, cysteine-rich, 29 amino acids long peptide in Mycoplasma pneumoniae . FEMS Microbiol Lett253:315–321 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052464-0
Loading
/content/journal/micro/10.1099/mic.0.052464-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error