1887

Abstract

grows in one of two ways: either (i) predatorily [in a host-dependent (HD) manner], when it invades the periplasm of another Gram-negative bacterium, exporting into the prey co-ordinated waves of soluble enzymes using the prey cell contents for growth; or (ii) in a host-independent (HI) manner, when it grows (slowly) axenically in rich media. Periplasmic invasion potentially exposes to extremes of pH and exposes the need to scavenge electron donors from prey electron transport components by synthesis of metalloenzymes. The twin-arginine transport system (Tat) in other bacteria transports folded metalloenzymes and the genome encodes 21 potential Tat-transported substrates and Tat transporter proteins TatA1, TatA2 and TatBC. GFP tagging of the Tat signal peptide from Bd1802, a high-potential iron–sulfur protein (HiPIP), revealed it to be exported into the prey bacterium during predatory growth. Mutagenesis showed that the and gene products are essential for both HI and HD growth, despite the fact that they partially complement (in SDS resistance assays) the corresponding mutations in where neither TatA nor TatC are essential for life. The essentiality of TatA2 was surprising given that the genome encodes a second homologue, . Transcription of was found to be induced upon entry to the bdelloplast, and insertional inactivation of showed that it significantly slowed the rates of both HI and HD growth. is one of a few bacterial species that are reliant on a functional Tat system and where deletion of a single gene causes a significant growth defect(s), despite the presence of its homologue.

Funding
This study was supported by the:
  • Human Frontier Science Programme (Award RGP57/2005)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052449-0
2011-11-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3079.html?itemId=/content/journal/micro/10.1099/mic.0.052449-0&mimeType=html&fmt=ahah

References

  1. Alami M., Lüke I., Deitermann S., Eisner G., Koch H. G., Brunner J., Müller M. ( 2003). Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli . Mol Cell 12:937–946 [CrossRef][PubMed]
    [Google Scholar]
  2. Amann E., Ochs B., Abel K. J. ( 1988). Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli . Gene 69:301–315 [CrossRef][PubMed]
    [Google Scholar]
  3. Bagos P. G., Nikolaou E. P., Liakopoulos T. D., Tsirigos K. D. ( 2010). Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26:2811–2817 [CrossRef][PubMed]
    [Google Scholar]
  4. Barabote R. D., Rendulic S., Schuster S. C., Saier M. H. Jr ( 2007). Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus . Genomics 90:424–446 [CrossRef][PubMed]
    [Google Scholar]
  5. Barel G., Jurkevitch E. ( 2001). Analysis of phenotypic diversity among host-independent mutants of Bdellovibrio bacteriovorus 109J. Arch Microbiol 176:211–216 [CrossRef][PubMed]
    [Google Scholar]
  6. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J. A., Molin S., Prensier G. et al. & other authors ( 2004). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674 [CrossRef][PubMed]
    [Google Scholar]
  7. Bendtsen J. D., Nielsen H., Widdick D., Palmer T., Brunak S. ( 2005). Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167 [CrossRef][PubMed]
    [Google Scholar]
  8. Berks B. C. ( 1996). A common export pathway for proteins binding complex redox cofactors?. Mol Microbiol 22:393–404 [CrossRef][PubMed]
    [Google Scholar]
  9. Berks B. C., Palmer T., Sargent F. ( 2005). Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8:174–181 [CrossRef][PubMed]
    [Google Scholar]
  10. Bernhardt T. G., de Boer P. A. ( 2003). The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48:1171–1182 [CrossRef][PubMed]
    [Google Scholar]
  11. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E. ( 1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [CrossRef][PubMed]
    [Google Scholar]
  12. Blaudeck N., Kreutzenbeck P., Müller M., Sprenger G. A., Freudl R. ( 2005). Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J Biol Chem 280:3426–3432 [CrossRef][PubMed]
    [Google Scholar]
  13. Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. ( 1998). An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273:18003–18006 [CrossRef][PubMed]
    [Google Scholar]
  14. Bolhuis A., Mathers J. E., Thomas J. D., Barrett C. M., Robinson C. ( 2001). TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli . J Biol Chem 276:20213–20219 [CrossRef][PubMed]
    [Google Scholar]
  15. Brüser T. ( 2007). The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol 76:35–45 [CrossRef][PubMed]
    [Google Scholar]
  16. Buchanan G., de Leeuw E., Stanley N. R., Wexler M., Berks B. C., Sargent F., Palmer T. ( 2002). Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43:1457–1470 [CrossRef][PubMed]
    [Google Scholar]
  17. Casadaban M. J., Cohen S. N. ( 1979). Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A 76:4530–4533 [CrossRef][PubMed]
    [Google Scholar]
  18. Dabney-Smith C., Mori H., Cline K. ( 2006). Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J Biol Chem 281:5476–5483 [CrossRef][PubMed]
    [Google Scholar]
  19. De Buck E., Lammertyn E., Anné J. ( 2008). The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16:442–453 [CrossRef][PubMed]
    [Google Scholar]
  20. DeLisa M. P., Samuelson P., Palmer T., Georgiou G. ( 2002). Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem 277:29825–29831 [CrossRef][PubMed]
    [Google Scholar]
  21. Dilks K., Giménez M. I., Pohlschröder M. ( 2005). Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol 187:8104–8113 [CrossRef][PubMed]
    [Google Scholar]
  22. Dubini A., Pye R. L., Jack R. L., Palmer T., Sargent F. ( 2002). How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli . . Int J Hydrogen Energy 27:1413–1420 [CrossRef]
    [Google Scholar]
  23. Evans K. J., Lambert C., Sockett R. E. ( 2007). Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol 189:4850–4859 [CrossRef][PubMed]
    [Google Scholar]
  24. Fenton A. K., Kanna M., Woods R. D., Aizawa S. I., Sockett R. E. ( 2010). Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol 192:6329–6335 [CrossRef][PubMed]
    [Google Scholar]
  25. Gohlke U., Pullan L., McDevitt C. A., Porcelli I., de Leeuw E., Palmer T., Saibil H. R., Berks B. C. ( 2005). The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A 102:10482–10486 [CrossRef][PubMed]
    [Google Scholar]
  26. González A., Benini S., Ciurli S. ( 2003). Structure of Rhodoferax fermentans high-potential iron-sulfur protein solved by MAD. Acta Crystallogr D Biol Crystallogr 59:1582–1588 [CrossRef][PubMed]
    [Google Scholar]
  27. Heikkilä M. P., Honisch U., Wunsch P., Zumft W. G. ( 2001). Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd 1 biosynthesis in Pseudomonas stutzeri . J Bacteriol 183:1663–1671 [CrossRef][PubMed]
    [Google Scholar]
  28. Hobley L., King J. R., Sockett R. E. ( 2006). Bdellovibrio predation in the presence of decoys: Three-way bacterial interactions revealed by mathematical and experimental analyses. Appl Environ Microbiol 72:6757–6765 [CrossRef][PubMed]
    [Google Scholar]
  29. Holzapfel E., Eisner G., Alami M., Barrett C. M., Buchanan G., Lüke I., Betton J. M., Robinson C., Palmer T. et al. & other authors ( 2007). The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46:2892–2898 [CrossRef][PubMed]
    [Google Scholar]
  30. Iida Y., Hobley L., Lambert C., Fenton A. K., Sockett R. E., Aizawa S. ( 2009). Roles of multiple flagellins in flagellar formation and flagellar growth post bdelloplast lysis in Bdellovibrio bacteriovorus . J Mol Biol 394:1011–1021 [CrossRef][PubMed]
    [Google Scholar]
  31. Ize B., Stanley N. R., Buchanan G., Palmer T. ( 2003). Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–1193 [CrossRef][PubMed]
    [Google Scholar]
  32. Ize B., Coulthurst S. J., Hatzixanthis K., Caldelari I., Buchanan G., Barclay E. C., Richardson D. J., Palmer T., Sargent F. ( 2009). Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. Microbiology 155:3992–4004 [CrossRef][PubMed]
    [Google Scholar]
  33. Jack R. L., Sargent F., Berks B. C., Sawers G., Palmer T. ( 2001). Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183:1801–1804 [CrossRef][PubMed]
    [Google Scholar]
  34. Kessel M., Shilo M. ( 1976). Relationship of Bdellovibrio elongation and fission to host cell size. J Bacteriol 128:477–480[PubMed]
    [Google Scholar]
  35. Kimura Y., Saiga H., Hamanaka H., Matoba H. ( 2006). Myxococcus xanthus twin-arginine translocation system is important for growth and development. Arch Microbiol 184:387–396 [CrossRef][PubMed]
    [Google Scholar]
  36. Lambert C., Sockett R. E. ( 2008). Laboratory maintenance of Bdellovibrio . Curr Protoc Microbiol Chapter 7:7B–, 2[PubMed]
    [Google Scholar]
  37. Lambert C., Smith M. C., Sockett R. E. ( 2003). A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 5:127–132 [CrossRef][PubMed]
    [Google Scholar]
  38. Lambert C., Evans K. J., Till R., Hobley L., Capeness M., Rendulic S., Schuster S. C., Aizawa S., Sockett R. E. ( 2006). Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus . Mol Microbiol 60:274–286 [CrossRef][PubMed]
    [Google Scholar]
  39. Lambert C., Chang C. Y., Capeness M. J., Sockett R. E. ( 2010a). The first bite – profiling the predatosome in the bacterial pathogen Bdellovibrio . PLoS ONE 5:e8599 [CrossRef][PubMed]
    [Google Scholar]
  40. Lambert C., Ivanov P., Sockett R. E. ( 2010b). A transcriptional “Scream” early response of E. coli prey to predatory invasion by Bdellovibrio . Curr Microbiol 60:419–427 [CrossRef][PubMed]
    [Google Scholar]
  41. Lee P. A., Tullman-Ercek D., Georgiou G. ( 2006). The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395 [CrossRef][PubMed]
    [Google Scholar]
  42. Menon N. K., Chatelus C. Y., Dervartanian M., Wendt J. C., Shanmugam K. T., Peck H. D. Jr, Przybyla A. E. ( 1994). Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423[PubMed]
    [Google Scholar]
  43. Morehouse K. A., Hobley L., Capeness M., Sockett R. E. ( 2011). Three motAB stator gene products in Bdellovibrio bacteriovorus contribute to motility of a single flagellum during predatory and prey-independent growth. J Bacteriol 193:932–943 [CrossRef][PubMed]
    [Google Scholar]
  44. Palmer T., Sargent F., Berks B. C. ( 2005). Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180 [CrossRef][PubMed]
    [Google Scholar]
  45. Pickering B. S., Oresnik I. J. ( 2010). The twin arginine transport system appears to be essential for viability in Sinorhizobium meliloti . . J Bacteriol 192:5173–5180 [CrossRef][PubMed]
    [Google Scholar]
  46. Rendulic S., Jagtap P., Rosinus A., Eppinger M., Baar C., Lanz C., Keller H., Lambert C., Evans K. J. et al. & other authors ( 2004). A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692 [CrossRef][PubMed]
    [Google Scholar]
  47. Rogers M., Ekaterinaki N., Nimmo E., Sherratt D. ( 1986). Analysis of Tn7 transposition. Mol Gen Genet 205:550–556 [CrossRef][PubMed]
    [Google Scholar]
  48. Roschanski N., Klages S., Reinhardt R., Linscheid M., Strauch E. ( 2011). Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100. J Bacteriol 193:1745–1756 [CrossRef][PubMed]
    [Google Scholar]
  49. Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M. ( 2002). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950 [CrossRef][PubMed]
    [Google Scholar]
  50. Samaluru H., SaiSree L., Reddy M. ( 2007). Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol 189:8044–8052 [CrossRef][PubMed]
    [Google Scholar]
  51. Sargent F. ( 2007a). The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans 35:835–847 [CrossRef][PubMed]
    [Google Scholar]
  52. Sargent F. ( 2007b). Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153:633–651 [CrossRef][PubMed]
    [Google Scholar]
  53. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T. ( 1998). Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650 [CrossRef][PubMed]
    [Google Scholar]
  54. Sargent F., Stanley N. R., Berks B. C., Palmer T. ( 1999). Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274:36073–36082 [CrossRef][PubMed]
    [Google Scholar]
  55. Sargent F., Gohlke U., De Leeuw E., Stanley N. R., Palmer T., Saibil H. R., Berks B. C. ( 2001). Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem 268:3361–3367 [CrossRef][PubMed]
    [Google Scholar]
  56. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. ( 1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  57. Shilo M., Bruff B. ( 1965). Lysis of Gram-negative bacteria by host-independent ectoparasitic Bdellovibrio bacteriovorus isolates. J Gen Microbiol 40:317–328[PubMed] [CrossRef]
    [Google Scholar]
  58. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  59. Sockett R. E. ( 2009). Predatory lifestyle of Bdellovibrio bacteriovorus . Annu Rev Microbiol 63:523–539 [CrossRef][PubMed]
    [Google Scholar]
  60. Southern E. M. ( 1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef][PubMed]
    [Google Scholar]
  61. Stanley N. R., Palmer T., Berks B. C. ( 2000). The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli . J Biol Chem 275:11591–11596 [CrossRef][PubMed]
    [Google Scholar]
  62. Stanley N. R., Findlay K., Berks B. C., Palmer T. ( 2001). Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol 183:139–144 [CrossRef][PubMed]
    [Google Scholar]
  63. Stevenson L. G., Strisovsky K., Clemmer K. M., Bhatt S., Freeman M., Rather P. N. ( 2007). Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci U S A 104:1003–1008 [CrossRef][PubMed]
    [Google Scholar]
  64. Steyert S. R., Pineiro S. A. ( 2007). Development of a novel genetic system to create markerless deletion mutants of Bdellovibrio bacteriovorus . Appl Environ Microbiol 73:4717–4724 [CrossRef][PubMed]
    [Google Scholar]
  65. Stolp H., Starr M. P. ( 1963). Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek 29:217–248 [CrossRef][PubMed]
    [Google Scholar]
  66. Tarry M., Arends S. J., Roversi P., Piette E., Sargent F., Berks B. C., Weiss D. S., Lea S. M. ( 2009). The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol 386:504–519 [CrossRef][PubMed]
    [Google Scholar]
  67. Thomashow M. F., Rittenberg S. C. ( 1979). Descriptive biology of the Bdellovibrios. Developmental Biology of Prokaryotes115–120 Parish J. H. Berkeley, CA: University of California Press;
    [Google Scholar]
  68. Turner R. J., Papish A. L., Sargent F. ( 2004). Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50:225–238 [CrossRef][PubMed]
    [Google Scholar]
  69. van der Ploeg R., Mäder U., Homuth G., Schaffer M., Denham E. L., Monteferrante C. G., Miethke M., Marahiel M. A., Harwood C. R. et al. & other authors ( 2011). Environmental salinity determines the specificity and need for Tat-dependent secretion of the YwbN protein in Bacillus subtilis . PLoS ONE 6:e18140 [CrossRef][PubMed]
    [Google Scholar]
  70. Vergnes A., Pommier J., Toci R., Blasco F., Giordano G., Magalon A. ( 2006). NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly. J Biol Chem 281:2170–2176 [CrossRef][PubMed]
    [Google Scholar]
  71. Vieira J., Messing J. ( 1982). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef][PubMed]
    [Google Scholar]
  72. Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J. ( 1998). A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93–101 [CrossRef][PubMed]
    [Google Scholar]
  73. Yanisch-Perron C., Vieira J., Messing J. ( 1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef][PubMed]
    [Google Scholar]
  74. Yuan J., Zweers J. C., van Dijl J. M., Dalbey R. E. ( 2010). Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052449-0
Loading
/content/journal/micro/10.1099/mic.0.052449-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error