1887

Abstract

grows in one of two ways: either (i) predatorily [in a host-dependent (HD) manner], when it invades the periplasm of another Gram-negative bacterium, exporting into the prey co-ordinated waves of soluble enzymes using the prey cell contents for growth; or (ii) in a host-independent (HI) manner, when it grows (slowly) axenically in rich media. Periplasmic invasion potentially exposes to extremes of pH and exposes the need to scavenge electron donors from prey electron transport components by synthesis of metalloenzymes. The twin-arginine transport system (Tat) in other bacteria transports folded metalloenzymes and the genome encodes 21 potential Tat-transported substrates and Tat transporter proteins TatA1, TatA2 and TatBC. GFP tagging of the Tat signal peptide from Bd1802, a high-potential iron–sulfur protein (HiPIP), revealed it to be exported into the prey bacterium during predatory growth. Mutagenesis showed that the and gene products are essential for both HI and HD growth, despite the fact that they partially complement (in SDS resistance assays) the corresponding mutations in where neither TatA nor TatC are essential for life. The essentiality of TatA2 was surprising given that the genome encodes a second homologue, . Transcription of was found to be induced upon entry to the bdelloplast, and insertional inactivation of showed that it significantly slowed the rates of both HI and HD growth. is one of a few bacterial species that are reliant on a functional Tat system and where deletion of a single gene causes a significant growth defect(s), despite the presence of its homologue.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052449-0
2011-11-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3079.html?itemId=/content/journal/micro/10.1099/mic.0.052449-0&mimeType=html&fmt=ahah

References

  1. Alami M., Lüke I., Deitermann S., Eisner G., Koch H. G., Brunner J., Müller M.. ( 2003;). Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli . Mol Cell12:937–946 [CrossRef][PubMed]
    [Google Scholar]
  2. Amann E., Ochs B., Abel K. J.. ( 1988;). Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli . Gene69:301–315 [CrossRef][PubMed]
    [Google Scholar]
  3. Bagos P. G., Nikolaou E. P., Liakopoulos T. D., Tsirigos K. D.. ( 2010;). Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics26:2811–2817 [CrossRef][PubMed]
    [Google Scholar]
  4. Barabote R. D., Rendulic S., Schuster S. C., Saier M. H. Jr. ( 2007;). Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus . Genomics90:424–446 [CrossRef][PubMed]
    [Google Scholar]
  5. Barel G., Jurkevitch E.. ( 2001;). Analysis of phenotypic diversity among host-independent mutants of Bdellovibrio bacteriovorus 109J. Arch Microbiol176:211–216 [CrossRef][PubMed]
    [Google Scholar]
  6. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J. A., Molin S., Prensier G. et al. & other authors ( 2004;). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol51:659–674 [CrossRef][PubMed]
    [Google Scholar]
  7. Bendtsen J. D., Nielsen H., Widdick D., Palmer T., Brunak S.. ( 2005;). Prediction of twin-arginine signal peptides. BMC Bioinformatics6:167 [CrossRef][PubMed]
    [Google Scholar]
  8. Berks B. C.. ( 1996;). A common export pathway for proteins binding complex redox cofactors?. Mol Microbiol22:393–404 [CrossRef][PubMed]
    [Google Scholar]
  9. Berks B. C., Palmer T., Sargent F.. ( 2005;). Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol8:174–181 [CrossRef][PubMed]
    [Google Scholar]
  10. Bernhardt T. G., de Boer P. A.. ( 2003;). The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol48:1171–1182 [CrossRef][PubMed]
    [Google Scholar]
  11. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E.. ( 1992;). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene116:43–49 [CrossRef][PubMed]
    [Google Scholar]
  12. Blaudeck N., Kreutzenbeck P., Müller M., Sprenger G. A., Freudl R.. ( 2005;). Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J Biol Chem280:3426–3432 [CrossRef][PubMed]
    [Google Scholar]
  13. Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T.. ( 1998;). An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem273:18003–18006 [CrossRef][PubMed]
    [Google Scholar]
  14. Bolhuis A., Mathers J. E., Thomas J. D., Barrett C. M., Robinson C.. ( 2001;). TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli . J Biol Chem276:20213–20219 [CrossRef][PubMed]
    [Google Scholar]
  15. Brüser T.. ( 2007;). The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol76:35–45 [CrossRef][PubMed]
    [Google Scholar]
  16. Buchanan G., de Leeuw E., Stanley N. R., Wexler M., Berks B. C., Sargent F., Palmer T.. ( 2002;). Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol43:1457–1470 [CrossRef][PubMed]
    [Google Scholar]
  17. Casadaban M. J., Cohen S. N.. ( 1979;). Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A76:4530–4533 [CrossRef][PubMed]
    [Google Scholar]
  18. Dabney-Smith C., Mori H., Cline K.. ( 2006;). Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J Biol Chem281:5476–5483 [CrossRef][PubMed]
    [Google Scholar]
  19. De Buck E., Lammertyn E., Anné J.. ( 2008;). The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol16:442–453 [CrossRef][PubMed]
    [Google Scholar]
  20. DeLisa M. P., Samuelson P., Palmer T., Georgiou G.. ( 2002;). Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem277:29825–29831 [CrossRef][PubMed]
    [Google Scholar]
  21. Dilks K., Giménez M. I., Pohlschröder M.. ( 2005;). Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol187:8104–8113 [CrossRef][PubMed]
    [Google Scholar]
  22. Dubini A., Pye R. L., Jack R. L., Palmer T., Sargent F.. ( 2002;). How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli . . Int J Hydrogen Energy27:1413–1420 [CrossRef]
    [Google Scholar]
  23. Evans K. J., Lambert C., Sockett R. E.. ( 2007;). Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol189:4850–4859 [CrossRef][PubMed]
    [Google Scholar]
  24. Fenton A. K., Kanna M., Woods R. D., Aizawa S. I., Sockett R. E.. ( 2010;). Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol192:6329–6335 [CrossRef][PubMed]
    [Google Scholar]
  25. Gohlke U., Pullan L., McDevitt C. A., Porcelli I., de Leeuw E., Palmer T., Saibil H. R., Berks B. C.. ( 2005;). The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A102:10482–10486 [CrossRef][PubMed]
    [Google Scholar]
  26. González A., Benini S., Ciurli S.. ( 2003;). Structure of Rhodoferax fermentans high-potential iron-sulfur protein solved by MAD. Acta Crystallogr D Biol Crystallogr59:1582–1588 [CrossRef][PubMed]
    [Google Scholar]
  27. Heikkilä M. P., Honisch U., Wunsch P., Zumft W. G.. ( 2001;). Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd 1 biosynthesis in Pseudomonas stutzeri . J Bacteriol183:1663–1671 [CrossRef][PubMed]
    [Google Scholar]
  28. Hobley L., King J. R., Sockett R. E.. ( 2006;). Bdellovibrio predation in the presence of decoys: Three-way bacterial interactions revealed by mathematical and experimental analyses. Appl Environ Microbiol72:6757–6765 [CrossRef][PubMed]
    [Google Scholar]
  29. Holzapfel E., Eisner G., Alami M., Barrett C. M., Buchanan G., Lüke I., Betton J. M., Robinson C., Palmer T. et al. & other authors ( 2007;). The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry46:2892–2898 [CrossRef][PubMed]
    [Google Scholar]
  30. Iida Y., Hobley L., Lambert C., Fenton A. K., Sockett R. E., Aizawa S.. ( 2009;). Roles of multiple flagellins in flagellar formation and flagellar growth post bdelloplast lysis in Bdellovibrio bacteriovorus . J Mol Biol394:1011–1021 [CrossRef][PubMed]
    [Google Scholar]
  31. Ize B., Stanley N. R., Buchanan G., Palmer T.. ( 2003;). Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol48:1183–1193 [CrossRef][PubMed]
    [Google Scholar]
  32. Ize B., Coulthurst S. J., Hatzixanthis K., Caldelari I., Buchanan G., Barclay E. C., Richardson D. J., Palmer T., Sargent F.. ( 2009;). Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. Microbiology155:3992–4004 [CrossRef][PubMed]
    [Google Scholar]
  33. Jack R. L., Sargent F., Berks B. C., Sawers G., Palmer T.. ( 2001;). Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol183:1801–1804 [CrossRef][PubMed]
    [Google Scholar]
  34. Kessel M., Shilo M.. ( 1976;). Relationship of Bdellovibrio elongation and fission to host cell size. J Bacteriol128:477–480[PubMed]
    [Google Scholar]
  35. Kimura Y., Saiga H., Hamanaka H., Matoba H.. ( 2006;). Myxococcus xanthus twin-arginine translocation system is important for growth and development. Arch Microbiol184:387–396 [CrossRef][PubMed]
    [Google Scholar]
  36. Lambert C., Sockett R. E.. ( 2008;). Laboratory maintenance of Bdellovibrio . Curr Protoc MicrobiolChapter 7:7B–, 2[PubMed]
    [Google Scholar]
  37. Lambert C., Smith M. C., Sockett R. E.. ( 2003;). A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol5:127–132 [CrossRef][PubMed]
    [Google Scholar]
  38. Lambert C., Evans K. J., Till R., Hobley L., Capeness M., Rendulic S., Schuster S. C., Aizawa S., Sockett R. E.. ( 2006;). Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus . Mol Microbiol60:274–286 [CrossRef][PubMed]
    [Google Scholar]
  39. Lambert C., Chang C. Y., Capeness M. J., Sockett R. E.. ( 2010a;). The first bite – profiling the predatosome in the bacterial pathogen Bdellovibrio . PLoS ONE5:e8599 [CrossRef][PubMed]
    [Google Scholar]
  40. Lambert C., Ivanov P., Sockett R. E.. ( 2010b;). A transcriptional “Scream” early response of E. coli prey to predatory invasion by Bdellovibrio . Curr Microbiol60:419–427 [CrossRef][PubMed]
    [Google Scholar]
  41. Lee P. A., Tullman-Ercek D., Georgiou G.. ( 2006;). The bacterial twin-arginine translocation pathway. Annu Rev Microbiol60:373–395 [CrossRef][PubMed]
    [Google Scholar]
  42. Menon N. K., Chatelus C. Y., Dervartanian M., Wendt J. C., Shanmugam K. T., Peck H. D. Jr, Przybyla A. E.. ( 1994;). Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol176:4416–4423[PubMed]
    [Google Scholar]
  43. Morehouse K. A., Hobley L., Capeness M., Sockett R. E.. ( 2011;). Three motAB stator gene products in Bdellovibrio bacteriovorus contribute to motility of a single flagellum during predatory and prey-independent growth. J Bacteriol193:932–943 [CrossRef][PubMed]
    [Google Scholar]
  44. Palmer T., Sargent F., Berks B. C.. ( 2005;). Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol13:175–180 [CrossRef][PubMed]
    [Google Scholar]
  45. Pickering B. S., Oresnik I. J.. ( 2010;). The twin arginine transport system appears to be essential for viability in Sinorhizobium meliloti . . J Bacteriol192:5173–5180 [CrossRef][PubMed]
    [Google Scholar]
  46. Rendulic S., Jagtap P., Rosinus A., Eppinger M., Baar C., Lanz C., Keller H., Lambert C., Evans K. J. et al. & other authors ( 2004;). A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science303:689–692 [CrossRef][PubMed]
    [Google Scholar]
  47. Rogers M., Ekaterinaki N., Nimmo E., Sherratt D.. ( 1986;). Analysis of Tn7 transposition. Mol Gen Genet205:550–556 [CrossRef][PubMed]
    [Google Scholar]
  48. Roschanski N., Klages S., Reinhardt R., Linscheid M., Strauch E.. ( 2011;). Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100. J Bacteriol193:1745–1756 [CrossRef][PubMed]
    [Google Scholar]
  49. Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M.. ( 2002;). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol45:943–950 [CrossRef][PubMed]
    [Google Scholar]
  50. Samaluru H., SaiSree L., Reddy M.. ( 2007;). Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol189:8044–8052 [CrossRef][PubMed]
    [Google Scholar]
  51. Sargent F.. ( 2007a;). The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans35:835–847 [CrossRef][PubMed]
    [Google Scholar]
  52. Sargent F.. ( 2007b;). Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology153:633–651 [CrossRef][PubMed]
    [Google Scholar]
  53. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T.. ( 1998;). Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J17:3640–3650 [CrossRef][PubMed]
    [Google Scholar]
  54. Sargent F., Stanley N. R., Berks B. C., Palmer T.. ( 1999;). Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem274:36073–36082 [CrossRef][PubMed]
    [Google Scholar]
  55. Sargent F., Gohlke U., De Leeuw E., Stanley N. R., Palmer T., Saibil H. R., Berks B. C.. ( 2001;). Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem268:3361–3367 [CrossRef][PubMed]
    [Google Scholar]
  56. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. ( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  57. Shilo M., Bruff B.. ( 1965;). Lysis of Gram-negative bacteria by host-independent ectoparasitic Bdellovibrio bacteriovorus isolates. J Gen Microbiol40:317–328[PubMed][CrossRef]
    [Google Scholar]
  58. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology1:784–791 [CrossRef]
    [Google Scholar]
  59. Sockett R. E.. ( 2009;). Predatory lifestyle of Bdellovibrio bacteriovorus . Annu Rev Microbiol63:523–539 [CrossRef][PubMed]
    [Google Scholar]
  60. Southern E. M.. ( 1975;). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol98:503–517 [CrossRef][PubMed]
    [Google Scholar]
  61. Stanley N. R., Palmer T., Berks B. C.. ( 2000;). The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli . J Biol Chem275:11591–11596 [CrossRef][PubMed]
    [Google Scholar]
  62. Stanley N. R., Findlay K., Berks B. C., Palmer T.. ( 2001;). Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol183:139–144 [CrossRef][PubMed]
    [Google Scholar]
  63. Stevenson L. G., Strisovsky K., Clemmer K. M., Bhatt S., Freeman M., Rather P. N.. ( 2007;). Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci U S A104:1003–1008 [CrossRef][PubMed]
    [Google Scholar]
  64. Steyert S. R., Pineiro S. A.. ( 2007;). Development of a novel genetic system to create markerless deletion mutants of Bdellovibrio bacteriovorus . Appl Environ Microbiol73:4717–4724 [CrossRef][PubMed]
    [Google Scholar]
  65. Stolp H., Starr M. P.. ( 1963;). Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek29:217–248 [CrossRef][PubMed]
    [Google Scholar]
  66. Tarry M., Arends S. J., Roversi P., Piette E., Sargent F., Berks B. C., Weiss D. S., Lea S. M.. ( 2009;). The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol386:504–519 [CrossRef][PubMed]
    [Google Scholar]
  67. Thomashow M. F., Rittenberg S. C.. ( 1979;). Descriptive biology of the Bdellovibrios. Developmental Biology of Prokaryotes115–120 Parish J. H.. Berkeley, CA: University of California Press;
    [Google Scholar]
  68. Turner R. J., Papish A. L., Sargent F.. ( 2004;). Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol50:225–238 [CrossRef][PubMed]
    [Google Scholar]
  69. van der Ploeg R., Mäder U., Homuth G., Schaffer M., Denham E. L., Monteferrante C. G., Miethke M., Marahiel M. A., Harwood C. R. et al. & other authors ( 2011;). Environmental salinity determines the specificity and need for Tat-dependent secretion of the YwbN protein in Bacillus subtilis . PLoS ONE6:e18140 [CrossRef][PubMed]
    [Google Scholar]
  70. Vergnes A., Pommier J., Toci R., Blasco F., Giordano G., Magalon A.. ( 2006;). NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly. J Biol Chem281:2170–2176 [CrossRef][PubMed]
    [Google Scholar]
  71. Vieira J., Messing J.. ( 1982;). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene19:259–268 [CrossRef][PubMed]
    [Google Scholar]
  72. Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J.. ( 1998;). A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell93:93–101 [CrossRef][PubMed]
    [Google Scholar]
  73. Yanisch-Perron C., Vieira J., Messing J.. ( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119 [CrossRef][PubMed]
    [Google Scholar]
  74. Yuan J., Zweers J. C., van Dijl J. M., Dalbey R. E.. ( 2010;). Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci67:179–199 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052449-0
Loading
/content/journal/micro/10.1099/mic.0.052449-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error