1887

Abstract

The ClpXP proteolytic complex is critical for maintaining cellular homeostasis, as well as expression of virulence properties. However, with the exception of the Spx global regulator, the molecular mechanisms by which the ClpXP complex exerts its influence in are not well understood. Here, microarray analysis was used to provide novel insights into the scope of ClpXP proteolysis in . In a Δ strain, 288 genes showed significant changes in relative transcript amounts (≤0.001, twofold cut-off) as compared with the parent. Similarly, 242 genes were differentially expressed by a Δ strain, 113 (47 %) of which also appeared in the Δ microarrays. Several genes associated with cell growth were downregulated in both mutants, consistent with the slow-growth phenotype of the Δ strains. Among the upregulated genes were those encoding enzymes required for the biosynthesis of intracellular polysaccharides ( genes) and malolactic fermentation ( genes). Enhanced expression of and genes in Δ and Δ strains correlated with increased storage of intracellular polysaccharide and enhanced malolactic fermentation activity, respectively. Expression of several genes known or predicted to be involved in competence and mutacin production was downregulated in the Δ strains. Follow-up transformation efficiency and deferred antagonism assays validated the microarray data by showing that competence and mutacin production were dramatically impaired in the Δ strains. Collectively, our results reveal the broad scope of ClpXP regulation in homeostasis and identify several virulence-related traits that are influenced by ClpXP proteolysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052407-0
2011-10-01
2020-05-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2880.html?itemId=/content/journal/micro/10.1099/mic.0.052407-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Candella M. M., Wen Z. T., Baker H. V., Burne R. A.. ( 2006;). Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans . J Bacteriol188:3748–3756 [CrossRef][PubMed]
    [Google Scholar]
  2. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. et al. & other authors ( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A99:14434–14439 [CrossRef][PubMed]
    [Google Scholar]
  3. Belli W. A., Marquis R. E.. ( 1991;). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol57:1134–1138[PubMed]
    [Google Scholar]
  4. Böttcher T., Sieber S. A.. ( 2008;). Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus . J Am Chem Soc130:14400–14401 [CrossRef][PubMed]
    [Google Scholar]
  5. Brötz-Oesterhelt H., Beyer D., Kroll H. P., Endermann R., Ladel C., Schroeder W., Hinzen B., Raddatz S., Paulsen H. et al. & other authors ( 2005;). Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med11:1082–1087 [CrossRef][PubMed]
    [Google Scholar]
  6. Bryan E. M., Bae T., Kleerebezem M., Dunny G. M.. ( 2000;). Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid44:183–190 [CrossRef][PubMed]
    [Google Scholar]
  7. Busuioc M., Mackiewicz K., Buttaro B. A., Piggot P. J.. ( 2009;). Role of intracellular polysaccharide in persistence of Streptococcus mutans . J Bacteriol191:7315–7322 [CrossRef][PubMed]
    [Google Scholar]
  8. Butler S. M., Festa R. A., Pearce M. J., Darwin K. H.. ( 2006;). Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol60:553–562 [CrossRef][PubMed]
    [Google Scholar]
  9. Chastanet A., Prudhomme M., Claverys J. P., Msadek T.. ( 2001;). Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol183:7295–7307 [CrossRef][PubMed]
    [Google Scholar]
  10. Chattoraj P., Banerjee A., Biswas S., Biswas I.. ( 2010;). ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol192:1312–1323 [CrossRef][PubMed]
    [Google Scholar]
  11. Deng D. M., ten Cate J. M., Crielaard W.. ( 2007;). The adaptive response of Streptococcus mutans towards oral care products: involvement of the ClpP serine protease. Eur J Oral Sci115:363–370 [CrossRef][PubMed]
    [Google Scholar]
  12. DiPersio J. R., Mattingly S. J., Higgins M. L., Shockman G. D.. ( 1978;). A quantitative ultrastructural and chemical investigation of the accumulation of iodophilic polysaccharide in two cariogenic strains of Streptococcus mutans . Microbios21:109–126[PubMed]
    [Google Scholar]
  13. Frees D., Qazi S. N., Hill P. J., Ingmer H.. ( 2003;). Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol48:1565–1578 [CrossRef][PubMed]
    [Google Scholar]
  14. Frees D., Chastanet A., Qazi S., Sørensen K., Hill P., Msadek T., Ingmer H.. ( 2004;). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus . Mol Microbiol54:1445–1462 [CrossRef][PubMed]
    [Google Scholar]
  15. Frees D., Savijoki K., Varmanen P., Ingmer H.. ( 2007;). Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol63:1285–1295 [CrossRef][PubMed]
    [Google Scholar]
  16. Gaillot O., Pellegrini E., Bregenholt S., Nair S., Berche P.. ( 2000;). The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes . Mol Microbiol35:1286–1294 [CrossRef][PubMed]
    [Google Scholar]
  17. Gibbons R. J., Socransky S. S.. ( 1962;). Intracellular polysaccharide storage by organisms in dental plaques: its relation to dental caries and microbial ecology of the oral cavity. Arch Oral Biol7:73–79 [CrossRef][PubMed]
    [Google Scholar]
  18. Gottesman S.. ( 2003;). Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol19:565–587 [CrossRef][PubMed]
    [Google Scholar]
  19. Hale J. D., Ting Y. T., Jack R. W., Tagg J. R., Heng N. C.. ( 2005;). Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl Environ Microbiol71:7613–7617 [CrossRef][PubMed]
    [Google Scholar]
  20. Håvarstein L. S., Diep D. B., Nes I. F.. ( 1995;). A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol16:229–240[CrossRef]
    [Google Scholar]
  21. Ibrahim Y. M., Kerr A. R., Silva N. A., Mitchell T. J.. ( 2005;). Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae . Infect Immun73:730–740 [CrossRef][PubMed]
    [Google Scholar]
  22. Jenal U., Hengge-Aronis R.. ( 2003;). Regulation by proteolysis in bacterial cells. Curr Opin Microbiol6:163–172 [CrossRef][PubMed]
    [Google Scholar]
  23. Kajfasz J. K., Martinez A. R., Rivera-Ramos I., Abranches J., Koo H., Quivey R. G. Jr, Lemos J. A.. ( 2009;). Role of Clp proteins in expression of virulence properties of Streptococcus mutans . J Bacteriol191:2060–2068 [CrossRef][PubMed]
    [Google Scholar]
  24. Kajfasz J. K., Rivera-Ramos I., Abranches J., Martinez A. R., Rosalen P. L., Derr A. M., Quivey R. G., Lemos J. A.. ( 2010;). Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans . J Bacteriol192:2546–2556 [CrossRef][PubMed]
    [Google Scholar]
  25. Kreth J., Merritt J., Shi W., Qi F.. ( 2005;). Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol57:392–404[CrossRef]
    [Google Scholar]
  26. Kreth J., Hung D. C., Merritt J., Perry J., Zhu L., Goodman S. D., Cvitkovitch D. G., Shi W., Qi F.. ( 2007;). The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology153:1799–1807 [CrossRef][PubMed]
    [Google Scholar]
  27. Kwon H. Y., Ogunniyi A. D., Choi M. H., Pyo S. N., Rhee D. K., Paton J. C.. ( 2004;). The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect Immun72:5646–5653 [CrossRef][PubMed]
    [Google Scholar]
  28. Lau P. C., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G.. ( 2002;). PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods49:193–205 [CrossRef][PubMed]
    [Google Scholar]
  29. Lemme A., Sztajer H., Wagner-Döbler I.. ( 2010;). Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans . BMC Microbiol10:58 [CrossRef][PubMed]
    [Google Scholar]
  30. Lemos J. A., Burne R. A.. ( 2002;). Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans . J Bacteriol184:6357–6366 [CrossRef][PubMed]
    [Google Scholar]
  31. Lemos J. A., Burne R. A.. ( 2008;). A model of efficiency: stress tolerance by Streptococcus mutans . Microbiology154:3247–3255 [CrossRef][PubMed]
    [Google Scholar]
  32. Lemos J. A., Nascimento M. M., Lin V. K., Abranches J., Burne R. A.. ( 2008;). Global regulation by (p)ppGpp and CodY in Streptococcus mutans . J Bacteriol190:5291–5299 [CrossRef][PubMed]
    [Google Scholar]
  33. Li Y. H., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G.. ( 2001;). Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol183:897–908[CrossRef]
    [Google Scholar]
  34. Loesche W. J.. ( 1986;). Role of Streptococcus mutans in human dental decay. Microbiol Rev50:353–380[PubMed]
    [Google Scholar]
  35. Martinez A. R., Abranches J., Kajfasz J. K., Lemos J. A.. ( 2010;). Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics. Mol Oral Microbiol25:331–342 [CrossRef][PubMed]
    [Google Scholar]
  36. Mashburn-Warren L., Morrison D. A., Federle M. J.. ( 2010;). A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol78:589–606 [CrossRef][PubMed]
    [Google Scholar]
  37. Matsumoto-Nakano M., Kuramitsu H. K.. ( 2006;). Role of bacteriocin immunity proteins in the antimicrobial sensitivity of Streptococcus mutans . J Bacteriol188:8095–8102 [CrossRef][PubMed]
    [Google Scholar]
  38. Nakano S., Nakano M. M., Zhang Y., Leelakriangsak M., Zuber P.. ( 2003;). A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci U S A100:4233–4238 [CrossRef][PubMed]
    [Google Scholar]
  39. Ooshima T., Matsumura M., Hoshino T., Kawabata S., Sobue S., Fujiwara T.. ( 2001;). Contributions of three glycosyltransferases to sucrose-dependent adherence of Streptococcus mutans . J Dent Res80:1672–1677 [CrossRef][PubMed]
    [Google Scholar]
  40. Perry J. A., Cvitkovitch D. G., Lévesque C. M.. ( 2009a;). Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol Lett299:261–266 [CrossRef][PubMed]
    [Google Scholar]
  41. Perry J. A., Jones M. B., Peterson S. N., Cvitkovitch D. G., Lévesque C. M.. ( 2009b;). Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol72:905–917 [CrossRef][PubMed]
    [Google Scholar]
  42. Qi F., Chen P., Caufield P. W.. ( 2001;). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol67:15–21 [CrossRef][PubMed]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sheng J., Marquis R. E.. ( 2007;). Malolactic fermentation by Streptococcus mutans . FEMS Microbiol Lett272:196–201 [CrossRef][PubMed]
    [Google Scholar]
  45. Sheng J., Baldeck J. D., Nguyen P. T., Quivey R. G. Jr, Marquis R. E.. ( 2010;). Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage. Can J Microbiol56:539–547 [CrossRef][PubMed]
    [Google Scholar]
  46. Spatafora G., Rohrer K., Barnard D., Michalek S.. ( 1995;). A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun63:2556–2563[PubMed]
    [Google Scholar]
  47. Steinmoen H., Teigen A., Håvarstein L. S.. ( 2003;). Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J Bacteriol185:7176–7183 [CrossRef][PubMed]
    [Google Scholar]
  48. Turlan C., Prudhomme M., Fichant G., Martin B., Gutierrez C.. ( 2009;). SpxA1, a novel transcriptional regulator involved in X-state (competence) development in Streptococcus pneumoniae . Mol Microbiol73:492–506 [CrossRef][PubMed]
    [Google Scholar]
  49. van der Ploeg J. R.. ( 2005;). Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol187:3980–3989 [CrossRef][PubMed]
    [Google Scholar]
  50. van Houte J., de Moor C. E., Jansen H. M.. ( 1970;). Synthesis of iodophilic polysaccharide by human oral streptococci. Arch Oral Biol15:263–266 [CrossRef][PubMed]
    [Google Scholar]
  51. Wunder D., Bowen W. H.. ( 2000;). Effects of antibodies to glucosyltransferase on soluble and insolubilized enzymes. Oral Dis6:289–296 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhang J., Banerjee A., Biswas I.. ( 2009;). Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans . J Bacteriol191:1056–1065 [CrossRef][PubMed]
    [Google Scholar]
  53. Zuber P.. ( 2004;). Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol186:1911–1918 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052407-0
Loading
/content/journal/micro/10.1099/mic.0.052407-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error