1887

Abstract

The ClpXP proteolytic complex is critical for maintaining cellular homeostasis, as well as expression of virulence properties. However, with the exception of the Spx global regulator, the molecular mechanisms by which the ClpXP complex exerts its influence in are not well understood. Here, microarray analysis was used to provide novel insights into the scope of ClpXP proteolysis in . In a Δ strain, 288 genes showed significant changes in relative transcript amounts (≤0.001, twofold cut-off) as compared with the parent. Similarly, 242 genes were differentially expressed by a Δ strain, 113 (47 %) of which also appeared in the Δ microarrays. Several genes associated with cell growth were downregulated in both mutants, consistent with the slow-growth phenotype of the Δ strains. Among the upregulated genes were those encoding enzymes required for the biosynthesis of intracellular polysaccharides ( genes) and malolactic fermentation ( genes). Enhanced expression of and genes in Δ and Δ strains correlated with increased storage of intracellular polysaccharide and enhanced malolactic fermentation activity, respectively. Expression of several genes known or predicted to be involved in competence and mutacin production was downregulated in the Δ strains. Follow-up transformation efficiency and deferred antagonism assays validated the microarray data by showing that competence and mutacin production were dramatically impaired in the Δ strains. Collectively, our results reveal the broad scope of ClpXP regulation in homeostasis and identify several virulence-related traits that are influenced by ClpXP proteolysis.

Funding
This study was supported by the:
  • NIH-NIDCR (Award DE019783)
  • NIDCR (Award T32 DE007202)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052407-0
2011-10-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2880.html?itemId=/content/journal/micro/10.1099/mic.0.052407-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Candella M. M., Wen Z. T., Baker H. V., Burne R. A. ( 2006). Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans . J Bacteriol 188:3748–3756 [CrossRef][PubMed]
    [Google Scholar]
  2. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. et al. & other authors ( 2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef][PubMed]
    [Google Scholar]
  3. Belli W. A., Marquis R. E. ( 1991). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57:1134–1138[PubMed]
    [Google Scholar]
  4. Böttcher T., Sieber S. A. ( 2008). Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus . J Am Chem Soc 130:14400–14401 [CrossRef][PubMed]
    [Google Scholar]
  5. Brötz-Oesterhelt H., Beyer D., Kroll H. P., Endermann R., Ladel C., Schroeder W., Hinzen B., Raddatz S., Paulsen H. et al. & other authors ( 2005). Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087 [CrossRef][PubMed]
    [Google Scholar]
  6. Bryan E. M., Bae T., Kleerebezem M., Dunny G. M. ( 2000). Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183–190 [CrossRef][PubMed]
    [Google Scholar]
  7. Busuioc M., Mackiewicz K., Buttaro B. A., Piggot P. J. ( 2009). Role of intracellular polysaccharide in persistence of Streptococcus mutans . J Bacteriol 191:7315–7322 [CrossRef][PubMed]
    [Google Scholar]
  8. Butler S. M., Festa R. A., Pearce M. J., Darwin K. H. ( 2006). Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60:553–562 [CrossRef][PubMed]
    [Google Scholar]
  9. Chastanet A., Prudhomme M., Claverys J. P., Msadek T. ( 2001). Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 183:7295–7307 [CrossRef][PubMed]
    [Google Scholar]
  10. Chattoraj P., Banerjee A., Biswas S., Biswas I. ( 2010). ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol 192:1312–1323 [CrossRef][PubMed]
    [Google Scholar]
  11. Deng D. M., ten Cate J. M., Crielaard W. ( 2007). The adaptive response of Streptococcus mutans towards oral care products: involvement of the ClpP serine protease. Eur J Oral Sci 115:363–370 [CrossRef][PubMed]
    [Google Scholar]
  12. DiPersio J. R., Mattingly S. J., Higgins M. L., Shockman G. D. ( 1978). A quantitative ultrastructural and chemical investigation of the accumulation of iodophilic polysaccharide in two cariogenic strains of Streptococcus mutans . Microbios 21:109–126[PubMed]
    [Google Scholar]
  13. Frees D., Qazi S. N., Hill P. J., Ingmer H. ( 2003). Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48:1565–1578 [CrossRef][PubMed]
    [Google Scholar]
  14. Frees D., Chastanet A., Qazi S., Sørensen K., Hill P., Msadek T., Ingmer H. ( 2004). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus . Mol Microbiol 54:1445–1462 [CrossRef][PubMed]
    [Google Scholar]
  15. Frees D., Savijoki K., Varmanen P., Ingmer H. ( 2007). Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63:1285–1295 [CrossRef][PubMed]
    [Google Scholar]
  16. Gaillot O., Pellegrini E., Bregenholt S., Nair S., Berche P. ( 2000). The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes . Mol Microbiol 35:1286–1294 [CrossRef][PubMed]
    [Google Scholar]
  17. Gibbons R. J., Socransky S. S. ( 1962). Intracellular polysaccharide storage by organisms in dental plaques: its relation to dental caries and microbial ecology of the oral cavity. Arch Oral Biol 7:73–79 [CrossRef][PubMed]
    [Google Scholar]
  18. Gottesman S. ( 2003). Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587 [CrossRef][PubMed]
    [Google Scholar]
  19. Hale J. D., Ting Y. T., Jack R. W., Tagg J. R., Heng N. C. ( 2005). Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl Environ Microbiol 71:7613–7617 [CrossRef][PubMed]
    [Google Scholar]
  20. Håvarstein L. S., Diep D. B., Nes I. F. ( 1995). A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240 [CrossRef]
    [Google Scholar]
  21. Ibrahim Y. M., Kerr A. R., Silva N. A., Mitchell T. J. ( 2005). Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae . Infect Immun 73:730–740 [CrossRef][PubMed]
    [Google Scholar]
  22. Jenal U., Hengge-Aronis R. ( 2003). Regulation by proteolysis in bacterial cells. Curr Opin Microbiol 6:163–172 [CrossRef][PubMed]
    [Google Scholar]
  23. Kajfasz J. K., Martinez A. R., Rivera-Ramos I., Abranches J., Koo H., Quivey R. G. Jr, Lemos J. A. ( 2009). Role of Clp proteins in expression of virulence properties of Streptococcus mutans . J Bacteriol 191:2060–2068 [CrossRef][PubMed]
    [Google Scholar]
  24. Kajfasz J. K., Rivera-Ramos I., Abranches J., Martinez A. R., Rosalen P. L., Derr A. M., Quivey R. G., Lemos J. A. ( 2010). Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans . J Bacteriol 192:2546–2556 [CrossRef][PubMed]
    [Google Scholar]
  25. Kreth J., Merritt J., Shi W., Qi F. ( 2005). Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404 [CrossRef]
    [Google Scholar]
  26. Kreth J., Hung D. C., Merritt J., Perry J., Zhu L., Goodman S. D., Cvitkovitch D. G., Shi W., Qi F. ( 2007). The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology 153:1799–1807 [CrossRef][PubMed]
    [Google Scholar]
  27. Kwon H. Y., Ogunniyi A. D., Choi M. H., Pyo S. N., Rhee D. K., Paton J. C. ( 2004). The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect Immun 72:5646–5653 [CrossRef][PubMed]
    [Google Scholar]
  28. Lau P. C., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G. ( 2002). PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49:193–205 [CrossRef][PubMed]
    [Google Scholar]
  29. Lemme A., Sztajer H., Wagner-Döbler I. ( 2010). Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans . BMC Microbiol 10:58 [CrossRef][PubMed]
    [Google Scholar]
  30. Lemos J. A., Burne R. A. ( 2002). Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans . J Bacteriol 184:6357–6366 [CrossRef][PubMed]
    [Google Scholar]
  31. Lemos J. A., Burne R. A. ( 2008). A model of efficiency: stress tolerance by Streptococcus mutans . Microbiology 154:3247–3255 [CrossRef][PubMed]
    [Google Scholar]
  32. Lemos J. A., Nascimento M. M., Lin V. K., Abranches J., Burne R. A. ( 2008). Global regulation by (p)ppGpp and CodY in Streptococcus mutans . J Bacteriol 190:5291–5299 [CrossRef][PubMed]
    [Google Scholar]
  33. Li Y. H., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G. ( 2001). Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908 [CrossRef]
    [Google Scholar]
  34. Loesche W. J. ( 1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380[PubMed]
    [Google Scholar]
  35. Martinez A. R., Abranches J., Kajfasz J. K., Lemos J. A. ( 2010). Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics. Mol Oral Microbiol 25:331–342 [CrossRef][PubMed]
    [Google Scholar]
  36. Mashburn-Warren L., Morrison D. A., Federle M. J. ( 2010). A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606 [CrossRef][PubMed]
    [Google Scholar]
  37. Matsumoto-Nakano M., Kuramitsu H. K. ( 2006). Role of bacteriocin immunity proteins in the antimicrobial sensitivity of Streptococcus mutans . J Bacteriol 188:8095–8102 [CrossRef][PubMed]
    [Google Scholar]
  38. Nakano S., Nakano M. M., Zhang Y., Leelakriangsak M., Zuber P. ( 2003). A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci U S A 100:4233–4238 [CrossRef][PubMed]
    [Google Scholar]
  39. Ooshima T., Matsumura M., Hoshino T., Kawabata S., Sobue S., Fujiwara T. ( 2001). Contributions of three glycosyltransferases to sucrose-dependent adherence of Streptococcus mutans . J Dent Res 80:1672–1677 [CrossRef][PubMed]
    [Google Scholar]
  40. Perry J. A., Cvitkovitch D. G., Lévesque C. M. ( 2009a). Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol Lett 299:261–266 [CrossRef][PubMed]
    [Google Scholar]
  41. Perry J. A., Jones M. B., Peterson S. N., Cvitkovitch D. G., Lévesque C. M. ( 2009b). Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 72:905–917 [CrossRef][PubMed]
    [Google Scholar]
  42. Qi F., Chen P., Caufield P. W. ( 2001). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21 [CrossRef][PubMed]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sheng J., Marquis R. E. ( 2007). Malolactic fermentation by Streptococcus mutans . FEMS Microbiol Lett 272:196–201 [CrossRef][PubMed]
    [Google Scholar]
  45. Sheng J., Baldeck J. D., Nguyen P. T., Quivey R. G. Jr, Marquis R. E. ( 2010). Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage. Can J Microbiol 56:539–547 [CrossRef][PubMed]
    [Google Scholar]
  46. Spatafora G., Rohrer K., Barnard D., Michalek S. ( 1995). A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun 63:2556–2563[PubMed]
    [Google Scholar]
  47. Steinmoen H., Teigen A., Håvarstein L. S. ( 2003). Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J Bacteriol 185:7176–7183 [CrossRef][PubMed]
    [Google Scholar]
  48. Turlan C., Prudhomme M., Fichant G., Martin B., Gutierrez C. ( 2009). SpxA1, a novel transcriptional regulator involved in X-state (competence) development in Streptococcus pneumoniae . Mol Microbiol 73:492–506 [CrossRef][PubMed]
    [Google Scholar]
  49. van der Ploeg J. R. ( 2005). Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989 [CrossRef][PubMed]
    [Google Scholar]
  50. van Houte J., de Moor C. E., Jansen H. M. ( 1970). Synthesis of iodophilic polysaccharide by human oral streptococci. Arch Oral Biol 15:263–266 [CrossRef][PubMed]
    [Google Scholar]
  51. Wunder D., Bowen W. H. ( 2000). Effects of antibodies to glucosyltransferase on soluble and insolubilized enzymes. Oral Dis 6:289–296 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhang J., Banerjee A., Biswas I. ( 2009). Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans . J Bacteriol 191:1056–1065 [CrossRef][PubMed]
    [Google Scholar]
  53. Zuber P. ( 2004). Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 186:1911–1918 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052407-0
Loading
/content/journal/micro/10.1099/mic.0.052407-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error