1887

Abstract

The genome of the highly pathogenic Nagasaki strain (serovar 5) was sequenced to 99 % completion. A genomic comparison with two other pathogenic serovar 5 strains identified six genes per genome () encoding β-arrel onomeric utotransporters, and being pseudogenes in at least one strain. The remaining encoded proteins were predicted to belong to the subtilisin (BmaA1 and BmaA4) and cysteine (BmaA5 and BmaA6) protease families. Allelic polymorphism was detected in other strains by comparative genomic hybridization using microarrays. Recombination events were observed, some of them leading to gene disruption in one of the three strains, although synteny around genes was conserved. These results suggest that genes are undergoing a process of reductive evolution. To evaluate their use as potential vaccine antigens, the products of the passenger domains of , , and were produced in as recombinant proteins. They were detected by immunoblotting using sera of colostrum-deprived piglets recovering from a sublethal infection with (Nagasaki). The existence of specific antibodies after infection with also demonstrated expression. Using proteomics, only BmaA6 was detected in the -grown Nagasaki strain. Interestingly, the translocator domain was found in the outer membrane, while the passenger domain was located in supernatants. These results indicate that BmaA proteins could be considered as immunogen candidates to improve vaccines. However, their capacity to confer protective immunity needs to be studied further.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052399-0
2012-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/436.html?itemId=/content/journal/micro/10.1099/mic.0.052399-0&mimeType=html&fmt=ahah

References

  1. Agniswamy J., Lei B., Musser J. M., Sun P. D. ( 2004). Insight of host immune evasion mediated by two variants of group A Streptococcus Mac protein. J Biol Chem 279:52789–52796 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Arnold K., Bordoli L., Kopp J., Schwede T. ( 2006). The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201
    [Google Scholar]
  4. Bateman A., Coin L., Durbin R., Finn R. D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S. & other authors ( 2004). The Pfam protein families database. Nucleic Acids Res 32:Database issueD138–D141 [View Article][PubMed]
    [Google Scholar]
  5. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. ( 2004). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [View Article][PubMed]
    [Google Scholar]
  6. Besemer J., Borodovsky M. ( 1999). Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27:3911–3920 [View Article][PubMed]
    [Google Scholar]
  7. Blanco I., Galina-Pantoja L., Oliveira S., Pijoan C., Sánchez C., Canals A. ( 2004). Comparison between Haemophilus parasuis infection in colostrums-deprived and sow-reared piglets. Vet Microbiol 103:21–27 [View Article][PubMed]
    [Google Scholar]
  8. Brunelle B. W., Nicholson T. L., Stephens R. S. ( 2004). Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis . Genome Biol 5:R42 [View Article][PubMed]
    [Google Scholar]
  9. Carlone G. M., Thomas M. L., Rumschlag H. S., Sottnek F. O. ( 1986). Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. J Clin Microbiol 24:330–332[PubMed]
    [Google Scholar]
  10. Castresana J. ( 2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552[PubMed] [CrossRef]
    [Google Scholar]
  11. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V. & other authors ( 2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:Web Server issueW465–W469 [View Article][PubMed]
    [Google Scholar]
  12. Edgar R. C. ( 2004). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  13. Ewing B., Green P. ( 1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194[PubMed] [CrossRef]
    [Google Scholar]
  14. Ewing B., Hillier L., Wendl M. C., Green P. ( 1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185[PubMed] [CrossRef]
    [Google Scholar]
  15. Fraser-Liggett C. M. ( 2005). Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610 [View Article][PubMed]
    [Google Scholar]
  16. Gardy J. L., Laird M. R., Chen F., Rey S., Walsh C. J., Ester M., Brinkman F. S. L. ( 2005). psortb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623 [View Article][PubMed]
    [Google Scholar]
  17. Gordon D., Abajian C., Green P. ( 1998). Consed: a graphical tool for sequence finishing. Genome Res 8:195–202[PubMed] [CrossRef]
    [Google Scholar]
  18. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. ( 2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [View Article][PubMed]
    [Google Scholar]
  19. Henderson I. R., Nataro J. P. ( 2001). Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243 [View Article][PubMed]
    [Google Scholar]
  20. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala’Aldeen D. ( 2004). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744 [View Article][PubMed]
    [Google Scholar]
  21. Jacobsson S., Hedberg S. T., Mölling P., Unemo M., Comanducci M., Rappuoli R., Olcén P. ( 2009). Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease. Vaccine 27:1579–1584 [View Article][PubMed]
    [Google Scholar]
  22. Lee J. W., Lee S. Y., Song H., Yoo J. S. ( 2006). The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics 6:3550–3566 [View Article][PubMed]
    [Google Scholar]
  23. Liu D.-F., Mason K. W., Mastri M., Pazirandeh M., Cutter D., Fink D. L., St Geme J. W. III, Zhu D., Green B. A. ( 2004). The C-terminal fragment of the internal 110-kilodalton passenger domain of the Hap protein of nontypeable Haemophilus influenzae is a potential vaccine candidate. Infect Immun 72:6961–6968 [View Article][PubMed]
    [Google Scholar]
  24. Mira A., Pushker R. ( 2005). The silencing of pseudogenes. Mol Biol Evol 22:2135–2138 [View Article][PubMed]
    [Google Scholar]
  25. Mira A., Pushker R., Rodríguez-Valera F. ( 2006). The Neolithic revolution of bacterial genomes. Trends Microbiol 14:200–206 [View Article][PubMed]
    [Google Scholar]
  26. Oldfield N. J., Worrall K. E., Rycroft A. N., Ali T., Wooldridge K. G., Ala’Aldeen D. A. ( 2009). AasP autotransporter protein of Actinobacillus pleuropneumoniae does not protect pigs against homologous challenge. Vaccine 27:5278–5283 [View Article][PubMed]
    [Google Scholar]
  27. Olvera A., Pina S., Pérez-Simó M., Oliveira S., Bensaid A. ( 2010). Virulence-associated trimeric autotransporters of Haemophilus parasuis are antigenic proteins expressed in vivo. Vet Res 41:26 [View Article][PubMed]
    [Google Scholar]
  28. Pallen M. J., Chaudhuri R. R., Henderson I. R. ( 2003). Genomic analysis of secretion systems. Curr Opin Microbiol 6:519–527 [View Article][PubMed]
    [Google Scholar]
  29. Pina S., Olvera A., Barceló A., Bensaid A. ( 2009). Trimeric autotransporters of Haemophilus parasuis: generation of an extensive passenger domain repertoire specific for pathogenic strains. J Bacteriol 191:576–587 [View Article][PubMed]
    [Google Scholar]
  30. Rapp-Gabrielson V. J., Oliveira S. R., Pijoan C. ( 2006). Haemophilus parasuis . Diseases of Swine, 9th edn.681–690 Straw B. E., Zimmerman J. J., D’Allaire S., Taylor D. J. Oxford: Blackwell Publishing;
    [Google Scholar]
  31. Rawlings N. D., Barrett A. J., Bateman A. ( 2010). merops: the peptidase database. Nucleic Acids Res 38:Database issueD227–D233 [View Article][PubMed]
    [Google Scholar]
  32. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A. & other authors ( 2003). The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86 [View Article][PubMed]
    [Google Scholar]
  33. Salama N., Guillemin K., McDaniel T. K., Sherlock G., Tompkins L., Falkow S. ( 2000). A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci U S A 97:14668–14673 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. van der Woude M. W., Henderson I. R. ( 2008). Regulation and function of Ag43 (flu). Annu Rev Microbiol 62:153–169 [View Article][PubMed]
    [Google Scholar]
  36. Wells T. J., Tree J. J., Ulett G. C., Schembri M. A. ( 2007). Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol Lett 274:163–172 [View Article][PubMed]
    [Google Scholar]
  37. Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N. N., Kunin V., Goodwin L., Wu M. & other authors ( 2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060 [View Article][PubMed]
    [Google Scholar]
  38. Xu Z., Yue M., Zhou R., Jin Q., Fan Y., Bei W., Chen H. ( 2011). Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLoS ONE 6:e19631 [View Article][PubMed]
    [Google Scholar]
  39. Yue M., Yang F., Yang J., Bei W., Cai X., Chen L., Dong J., Zhou R., Jin M. & other authors ( 2009). Complete genome sequence of Haemophilus parasuis SH0165. J Bacteriol 191:1359–1360 [View Article][PubMed]
    [Google Scholar]
  40. Zhou M., Guo Y., Zhao J., Hu Q., Hu Y., Zhang A., Chen H., Jin M. ( 2009a). Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine 27:5271–5277 [View Article][PubMed]
    [Google Scholar]
  41. Zhou M., Zhang A., Guo Y., Liao Y., Chen H., Jin M. ( 2009b). A comprehensive proteome map of the Haemophilus parasuis serovar 5. Proteomics 9:2722–2739 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052399-0
Loading
/content/journal/micro/10.1099/mic.0.052399-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error