1887

Abstract

Transcription of rRNAs in is directed from seven redundant rRNA operons, which are mainly regulated by their P1 promoters. Here we demonstrate by measurements that the amounts of individual rRNAs transcribed from the different operons under normal growth vary noticeably although the structures of all the P1 promoters are very similar. Moreover, we show that starvation for amino acids does not affect the seven P1 promoters in the same way. Notably, reduction of transcription from P1 was significantly lower compared to the other P1 promoters. The presence of DksA was shown to be crucial for the ppGpp-dependent downregulation of all P1 promoters. Because P1 is the only promoter starting with GTP instead of ATP, we performed studies with a mutant promoter, where the initiating G+1 is replaced by A+1. These analyses demonstrated that the ppGpp sensitivity of P1 promoters depends on the nature and concentration of initiating nucleoside triphosphates (iNTPs). Our results support the notion that the seven rRNA operons are differentially regulated and underline the importance of a concerted activity between ppGpp, DksA and an adequate concentration of the respective iNTP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052357-0
2011-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2871.html?itemId=/content/journal/micro/10.1099/mic.0.052357-0&mimeType=html&fmt=ahah

References

  1. Afflerbach H., Schröder O., Wagner R.. ( 1998;). Effects of the Escherichia coli DNA-binding protein H-NS on rRNA synthesis in vivo. . Mol Microbiol28:641–653 [CrossRef][PubMed]
    [Google Scholar]
  2. Afflerbach H., Schröder O., Wagner R.. ( 1999;). Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli rrnB P1 promoter activity. J Mol Biol286:339–353 [CrossRef][PubMed]
    [Google Scholar]
  3. Artsimovitch I., Patlan V., Sekine S., Vassylyeva M. N., Hosaka T., Ochi K., Yokoyama S., Vassylyev D. G.. ( 2004;). Structural basis for transcription regulation by alarmone ppGpp. Cell117:299–310 [CrossRef][PubMed]
    [Google Scholar]
  4. Barker M. M., Gaal T., Josaitis C. A., Gourse R. L.. ( 2001;). Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. . J Mol Biol305:673–688 [CrossRef][PubMed]
    [Google Scholar]
  5. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. et al. ( 1997;). The complete genome sequence of Escherichia coli K-12. Science277:1453–1462 [CrossRef][PubMed]
    [Google Scholar]
  6. Boyer H. W., Roulland-Dussoix D.. ( 1969;). A complementation analysis of the restriction and modification of DNA in Escherichia coli. . J Mol Biol41:459–472 [CrossRef][PubMed]
    [Google Scholar]
  7. Brown L., Gentry D., Elliott T., Cashel M.. ( 2002;). DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol184:4455–4465 [CrossRef][PubMed]
    [Google Scholar]
  8. Condon C., Liveris D., Squires C., Schwartz I., Squires C. L.. ( 1995a;). rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol177:4152–4156[PubMed]
    [Google Scholar]
  9. Condon C., Squires C., Squires C. L.. ( 1995b;). Control of rRNA transcription in Escherichia coli. . Microbiol Rev59:623–645[PubMed]
    [Google Scholar]
  10. Fiil N., Friesen J. D.. ( 1968;). Isolation of “relaxed” mutants of Escherichia coli . J Bacteriol95:729–731[PubMed]
    [Google Scholar]
  11. Gourse R. L.. ( 1988;). Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. . Nucleic Acids Res16:9789–9809 [CrossRef][PubMed]
    [Google Scholar]
  12. Gunderson J. H., Sogin M. L., Wollett G., Hollingdale M., de la Cruz V. F., Waters A. P., McCutchan T. F.. ( 1987;). Structurally distinct, stage-specific ribosomes occur in Plasmodium. . Science238:933–937 [CrossRef][PubMed]
    [Google Scholar]
  13. Heinemann M., Wagner R.. ( 1997;). Guanosine 3′,5′-bis(diphosphate) (ppGpp)-dependent inhibition of transcription from stringently controlled Escherichia coli promoters can be explained by an altered initiation pathway that traps RNA polymerase. Eur J Biochem247:990–999 [CrossRef][PubMed]
    [Google Scholar]
  14. Hillebrand A., Wurm R., Menzel A., Wagner R.. ( 2005;). The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem386:523–534 [CrossRef][PubMed]
    [Google Scholar]
  15. Hirvonen C. A., Ross W., Wozniak C. E., Marasco E., Anthony J. R., Aiyar S. E., Newburn V. H., Gourse R. L.. ( 2001;). Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli. . J Bacteriol183:6305–6314 [CrossRef][PubMed]
    [Google Scholar]
  16. Hofmann N., Wurm R., Wagner R.. ( 2011;). The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression. PLoS ONE6:e19235 [CrossRef][PubMed]
    [Google Scholar]
  17. Jinks-Robertson S., Gourse R. L., Nomura M.. ( 1983;). Expression of rRNA and tRNA genes in Escherichia coli: evidence for feedback regulation by products of rRNA operons. Cell33:865–876 [CrossRef][PubMed]
    [Google Scholar]
  18. Jöres L., Wagner R.. ( 2003;). Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J Biol Chem278:16834–16843 [CrossRef][PubMed]
    [Google Scholar]
  19. Kang P. J., Craig E. A.. ( 1990;). Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J Bacteriol172:2055–2064[PubMed]
    [Google Scholar]
  20. Keener J., Nomura M.. ( 1996;). Regulation of ribosome biosynthesis. Escherichia coli and Salmonella: Cellular and Molecular Biology1417–1431 Neidhard F. C., Curtiss R., Ingraham J. L., Lin E. C. C., Low B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Kim H. L., Shin E. K., Kim H. M., Ryou S. M., Kim S., Cha C. J., Bae J., Lee K.. ( 2007;). Heterogeneous rRNAs are differentially expressed during the morphological development of Streptomyces coelicolor. . FEMS Microbiol Lett275:146–152 [CrossRef][PubMed]
    [Google Scholar]
  22. Krásný L., Gourse R. L.. ( 2004;). An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J23:4473–4483 [CrossRef][PubMed]
    [Google Scholar]
  23. Krásný L., Tiserová H., Jonák J., Rejman D., Sanderová H.. ( 2008;). The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. . Mol Microbiol69:42–54 [CrossRef][PubMed]
    [Google Scholar]
  24. Langert W., Meuthen M., Mueller K.. ( 1991;). Functional characteristics of the rrnD promoters of Escherichia coli. . J Biol Chem266:21608–21615[PubMed]
    [Google Scholar]
  25. Lemke J. J., Durfee T., Gourse R. L.. ( 2009;). DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol Microbiol74:1368–1379 [CrossRef][PubMed]
    [Google Scholar]
  26. Lew C. M., Gralla J. D.. ( 2004;). Nucleotide-dependent isomerization of Escherichia coli RNA polymerase. Biochemistry43:12660–12666 [CrossRef][PubMed]
    [Google Scholar]
  27. Liebig B., Wagner R.. ( 1995;). Effects of different growth conditions on the in vivo activity of the tandem Escherichia coli ribosomal RNA promoters P1 and P2. Mol Gen Genet249:328–335 [CrossRef][PubMed]
    [Google Scholar]
  28. López-López A., Benlloch S., Bonfá M., Rodríguez-Valera F., Mira A.. ( 2007;). Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J Mol Evol65:687–696 [CrossRef][PubMed]
    [Google Scholar]
  29. Neußer T., Gildehaus N., Wurm R., Wagner R.. ( 2008;). Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation. Biol Chem389:285–297 [CrossRef][PubMed]
    [Google Scholar]
  30. Nomura M., Gourse R. L., Baughman G.. ( 1984;). Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem53:75–117 [CrossRef][PubMed]
    [Google Scholar]
  31. Perederina A., Svetlov V., Vassylyeva M. N., Tahirov T. H., Yokoyama S., Artsimovitch I., Vassylyev D. G.. ( 2004;). Regulation through the secondary channel – structural framework for ppGpp-DksA synergism during transcription. Cell118:297–309 [CrossRef][PubMed]
    [Google Scholar]
  32. Potrykus K., Cashel M.. ( 2008;). (p)ppGpp: still magical?. Annu Rev Microbiol62:35–51 [CrossRef][PubMed]
    [Google Scholar]
  33. Pul Ü., Wurm R., Lux B., Meltzer M., Menzel A., Wagner R.. ( 2005;). LRP and H-NS – cooperative partners for transcription regulation at Escherichia coli rRNA promoters. Mol Microbiol58:864–876 [CrossRef][PubMed]
    [Google Scholar]
  34. Pul Ü., Wurm R., Wagner R.. ( 2007;). The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol366:900–915 [CrossRef][PubMed]
    [Google Scholar]
  35. Rutherford S. T., Lemke J. J., Vrentas C. E., Gaal T., Ross W., Gourse R. L.. ( 2007;). Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J Mol Biol366:1243–1257 [CrossRef][PubMed]
    [Google Scholar]
  36. Rutherford S. T., Villers C. L., Lee J. H., Ross W., Gourse R. L.. ( 2009;). Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev23:236–248 [CrossRef][PubMed]
    [Google Scholar]
  37. Schneider D. A., Gaal T., Gourse R. L.. ( 2002;). NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc Natl Acad Sci U S A99:8602–8607[PubMed][CrossRef]
    [Google Scholar]
  38. Schneider D. A., Ross W., Gourse R. L.. ( 2003;). Control of rRNA expression in Escherichia coli. . Curr Opin Microbiol6:151–156 [CrossRef][PubMed]
    [Google Scholar]
  39. Tosa T., Pizer L. I.. ( 1971;). Biochemical bases for the antimetabolite action of -serine hydroxamate. J Bacteriol106:972–982[PubMed]
    [Google Scholar]
  40. Triman K. L., Adams B. J.. ( 1997;). Expansion of the 16S and 23S ribosomal RNA mutation databases (16SMDB and 23SMDB). Nucleic Acids Res25:188–191 [CrossRef][PubMed]
    [Google Scholar]
  41. Vrentas C. E., Gaal T., Berkmen M. B., Rutherford S. T., Haugen S. P., Vassylyev D. G., Ross W., Gourse R. L.. ( 2008;). Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation. J Mol Biol377:551–564 [CrossRef][PubMed]
    [Google Scholar]
  42. Wagner R.. ( 1994;). The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol161:100–109 [CrossRef][PubMed]
    [Google Scholar]
  43. Wagner R.. ( 2009;). Translational components in prokaryotes: genetics and regulation of ribosomes. Enzyclopedia of Life Sciences (ELS) Chichester: Wiley; [CrossRef]
    [Google Scholar]
  44. Wagner R.. ( 2010;). ppGpp Signalling. Weinheim: Wiley-VCH;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052357-0
Loading
/content/journal/micro/10.1099/mic.0.052357-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error