1887

Abstract

Transcription of rRNAs in is directed from seven redundant rRNA operons, which are mainly regulated by their P1 promoters. Here we demonstrate by measurements that the amounts of individual rRNAs transcribed from the different operons under normal growth vary noticeably although the structures of all the P1 promoters are very similar. Moreover, we show that starvation for amino acids does not affect the seven P1 promoters in the same way. Notably, reduction of transcription from P1 was significantly lower compared to the other P1 promoters. The presence of DksA was shown to be crucial for the ppGpp-dependent downregulation of all P1 promoters. Because P1 is the only promoter starting with GTP instead of ATP, we performed studies with a mutant promoter, where the initiating G+1 is replaced by A+1. These analyses demonstrated that the ppGpp sensitivity of P1 promoters depends on the nature and concentration of initiating nucleoside triphosphates (iNTPs). Our results support the notion that the seven rRNA operons are differentially regulated and underline the importance of a concerted activity between ppGpp, DksA and an adequate concentration of the respective iNTP.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award Wa 455/12-1)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052357-0
2011-10-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2871.html?itemId=/content/journal/micro/10.1099/mic.0.052357-0&mimeType=html&fmt=ahah

References

  1. Afflerbach H., Schröder O., Wagner R. ( 1998). Effects of the Escherichia coli DNA-binding protein H-NS on rRNA synthesis in vivo. . Mol Microbiol 28:641–653 [View Article][PubMed]
    [Google Scholar]
  2. Afflerbach H., Schröder O., Wagner R. ( 1999). Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli rrnB P1 promoter activity. J Mol Biol 286:339–353 [View Article][PubMed]
    [Google Scholar]
  3. Artsimovitch I., Patlan V., Sekine S., Vassylyeva M. N., Hosaka T., Ochi K., Yokoyama S., Vassylyev D. G. ( 2004). Structural basis for transcription regulation by alarmone ppGpp. Cell 117:299–310 [View Article][PubMed]
    [Google Scholar]
  4. Barker M. M., Gaal T., Josaitis C. A., Gourse R. L. ( 2001). Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. . J Mol Biol 305:673–688 [View Article][PubMed]
    [Google Scholar]
  5. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. et al. ( 1997). The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462 [View Article][PubMed]
    [Google Scholar]
  6. Boyer H. W., Roulland-Dussoix D. ( 1969). A complementation analysis of the restriction and modification of DNA in Escherichia coli. . J Mol Biol 41:459–472 [View Article][PubMed]
    [Google Scholar]
  7. Brown L., Gentry D., Elliott T., Cashel M. ( 2002). DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 184:4455–4465 [View Article][PubMed]
    [Google Scholar]
  8. Condon C., Liveris D., Squires C., Schwartz I., Squires C. L. ( 1995a). rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 177:4152–4156[PubMed]
    [Google Scholar]
  9. Condon C., Squires C., Squires C. L. ( 1995b). Control of rRNA transcription in Escherichia coli. . Microbiol Rev 59:623–645[PubMed]
    [Google Scholar]
  10. Fiil N., Friesen J. D. ( 1968). Isolation of “relaxed” mutants of Escherichia coli . J Bacteriol 95:729–731[PubMed]
    [Google Scholar]
  11. Gourse R. L. ( 1988). Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. . Nucleic Acids Res 16:9789–9809 [View Article][PubMed]
    [Google Scholar]
  12. Gunderson J. H., Sogin M. L., Wollett G., Hollingdale M., de la Cruz V. F., Waters A. P., McCutchan T. F. ( 1987). Structurally distinct, stage-specific ribosomes occur in Plasmodium. . Science 238:933–937 [View Article][PubMed]
    [Google Scholar]
  13. Heinemann M., Wagner R. ( 1997). Guanosine 3′,5′-bis(diphosphate) (ppGpp)-dependent inhibition of transcription from stringently controlled Escherichia coli promoters can be explained by an altered initiation pathway that traps RNA polymerase. Eur J Biochem 247:990–999 [View Article][PubMed]
    [Google Scholar]
  14. Hillebrand A., Wurm R., Menzel A., Wagner R. ( 2005). The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem 386:523–534 [View Article][PubMed]
    [Google Scholar]
  15. Hirvonen C. A., Ross W., Wozniak C. E., Marasco E., Anthony J. R., Aiyar S. E., Newburn V. H., Gourse R. L. ( 2001). Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli. . J Bacteriol 183:6305–6314 [View Article][PubMed]
    [Google Scholar]
  16. Hofmann N., Wurm R., Wagner R. ( 2011). The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression. PLoS ONE 6:e19235 [View Article][PubMed]
    [Google Scholar]
  17. Jinks-Robertson S., Gourse R. L., Nomura M. ( 1983). Expression of rRNA and tRNA genes in Escherichia coli: evidence for feedback regulation by products of rRNA operons. Cell 33:865–876 [View Article][PubMed]
    [Google Scholar]
  18. Jöres L., Wagner R. ( 2003). Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J Biol Chem 278:16834–16843 [View Article][PubMed]
    [Google Scholar]
  19. Kang P. J., Craig E. A. ( 1990). Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J Bacteriol 172:2055–2064[PubMed]
    [Google Scholar]
  20. Keener J., Nomura M. ( 1996). Regulation of ribosome biosynthesis. Escherichia coli and Salmonella: Cellular and Molecular Biology1417–1431 Neidhard F. C., Curtiss R., Ingraham J. L., Lin E. C. C., Low B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Kim H. L., Shin E. K., Kim H. M., Ryou S. M., Kim S., Cha C. J., Bae J., Lee K. ( 2007). Heterogeneous rRNAs are differentially expressed during the morphological development of Streptomyces coelicolor. . FEMS Microbiol Lett 275:146–152 [View Article][PubMed]
    [Google Scholar]
  22. Krásný L., Gourse R. L. ( 2004). An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4473–4483 [View Article][PubMed]
    [Google Scholar]
  23. Krásný L., Tiserová H., Jonák J., Rejman D., Sanderová H. ( 2008). The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. . Mol Microbiol 69:42–54 [View Article][PubMed]
    [Google Scholar]
  24. Langert W., Meuthen M., Mueller K. ( 1991). Functional characteristics of the rrnD promoters of Escherichia coli. . J Biol Chem 266:21608–21615[PubMed]
    [Google Scholar]
  25. Lemke J. J., Durfee T., Gourse R. L. ( 2009). DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol Microbiol 74:1368–1379 [View Article][PubMed]
    [Google Scholar]
  26. Lew C. M., Gralla J. D. ( 2004). Nucleotide-dependent isomerization of Escherichia coli RNA polymerase. Biochemistry 43:12660–12666 [View Article][PubMed]
    [Google Scholar]
  27. Liebig B., Wagner R. ( 1995). Effects of different growth conditions on the in vivo activity of the tandem Escherichia coli ribosomal RNA promoters P1 and P2. Mol Gen Genet 249:328–335 [View Article][PubMed]
    [Google Scholar]
  28. López-López A., Benlloch S., Bonfá M., Rodríguez-Valera F., Mira A. ( 2007). Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J Mol Evol 65:687–696 [View Article][PubMed]
    [Google Scholar]
  29. Neußer T., Gildehaus N., Wurm R., Wagner R. ( 2008). Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation. Biol Chem 389:285–297 [View Article][PubMed]
    [Google Scholar]
  30. Nomura M., Gourse R. L., Baughman G. ( 1984). Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75–117 [View Article][PubMed]
    [Google Scholar]
  31. Perederina A., Svetlov V., Vassylyeva M. N., Tahirov T. H., Yokoyama S., Artsimovitch I., Vassylyev D. G. ( 2004). Regulation through the secondary channel – structural framework for ppGpp-DksA synergism during transcription. Cell 118:297–309 [View Article][PubMed]
    [Google Scholar]
  32. Potrykus K., Cashel M. ( 2008). (p)ppGpp: still magical?. Annu Rev Microbiol 62:35–51 [View Article][PubMed]
    [Google Scholar]
  33. Pul Ü., Wurm R., Lux B., Meltzer M., Menzel A., Wagner R. ( 2005). LRP and H-NS – cooperative partners for transcription regulation at Escherichia coli rRNA promoters. Mol Microbiol 58:864–876 [View Article][PubMed]
    [Google Scholar]
  34. Pul Ü., Wurm R., Wagner R. ( 2007). The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol 366:900–915 [View Article][PubMed]
    [Google Scholar]
  35. Rutherford S. T., Lemke J. J., Vrentas C. E., Gaal T., Ross W., Gourse R. L. ( 2007). Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J Mol Biol 366:1243–1257 [View Article][PubMed]
    [Google Scholar]
  36. Rutherford S. T., Villers C. L., Lee J. H., Ross W., Gourse R. L. ( 2009). Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev 23:236–248 [View Article][PubMed]
    [Google Scholar]
  37. Schneider D. A., Gaal T., Gourse R. L. ( 2002). NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc Natl Acad Sci U S A 99:8602–8607[PubMed] [CrossRef]
    [Google Scholar]
  38. Schneider D. A., Ross W., Gourse R. L. ( 2003). Control of rRNA expression in Escherichia coli. . Curr Opin Microbiol 6:151–156 [View Article][PubMed]
    [Google Scholar]
  39. Tosa T., Pizer L. I. ( 1971). Biochemical bases for the antimetabolite action of -serine hydroxamate. J Bacteriol 106:972–982[PubMed]
    [Google Scholar]
  40. Triman K. L., Adams B. J. ( 1997). Expansion of the 16S and 23S ribosomal RNA mutation databases (16SMDB and 23SMDB). Nucleic Acids Res 25:188–191 [View Article][PubMed]
    [Google Scholar]
  41. Vrentas C. E., Gaal T., Berkmen M. B., Rutherford S. T., Haugen S. P., Vassylyev D. G., Ross W., Gourse R. L. ( 2008). Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation. J Mol Biol 377:551–564 [View Article][PubMed]
    [Google Scholar]
  42. Wagner R. ( 1994). The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161:100–109 [View Article][PubMed]
    [Google Scholar]
  43. Wagner R. ( 2009). Translational components in prokaryotes: genetics and regulation of ribosomes. Enzyclopedia of Life Sciences (ELS) Chichester: Wiley; [View Article]
    [Google Scholar]
  44. Wagner R. ( 2010). ppGpp Signalling. Weinheim: Wiley-VCH;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052357-0
Loading
/content/journal/micro/10.1099/mic.0.052357-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error