1887

Abstract

(teleomorph ) is a fungal genus found in many ecosystems. spp. can reduce the severity of plant diseases by inhibiting plant pathogens in the soil through their highly potent antagonistic and mycoparasitic activity. Moreover, as revealed by research in recent decades, some strains can interact directly with roots, increasing plant growth potential, resistance to disease and tolerance to abiotic stresses. This mini-review summarizes the main findings concerning the –plant interaction, the molecular dialogue between the two organisms, and the dramatic changes induced by the beneficial fungus in the plant. Efforts to enhance plant resistance and tolerance to a broad range of stresses by expressing genes in the plant genome are also addressed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052274-0
2012-01-01
2024-09-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/17.html?itemId=/content/journal/micro/10.1099/mic.0.052274-0&mimeType=html&fmt=ahah

References

  1. Altomare C., Norvell W. A., Björkman T., Harman G. E. ( 1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Appl Environ Microbiol 65:2926–2933[PubMed]
    [Google Scholar]
  2. Bae H., Sicher R. C., Kim M. S., Kim S. H., Strem M. D., Melnick R. L., Bailey B. A. ( 2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. . J Exp Bot 60:3279–3295 [View Article][PubMed]
    [Google Scholar]
  3. Baker R., Elad Y., Chet I. ( 1984). The controlled experiment in the scientific method with special emphasis on biological control. Phytopathology 74:1019–1021 [View Article]
    [Google Scholar]
  4. Baranski R., Klocke E., Nothnagel T. ( 2008). Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521 [View Article]
    [Google Scholar]
  5. Bolar J. P., Norelli J. L., Wong K. W., Hayes C. K., Harman G. E., Aldwinckle H. S. ( 2000). Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77 [View Article][PubMed]
    [Google Scholar]
  6. Bolar J. P., Norelli J., Harman G. E., Brown S. K., Aldwinckle H. S. ( 2001). Synergistic activity of endochitinase and exochitinase from Trichoderma harzianum against the pathogenic fungus Venturia inaequalis in transgenic plants. Transgenic Res 10:533–543 [View Article][PubMed]
    [Google Scholar]
  7. Brants A., Earle E. D. ( 2001). Transgenic tobacco cell cultures expressing a Trichoderma harzianum endochitinase gene release the enzyme into the medium. Plant Cell Rep 20:73–78 [View Article]
    [Google Scholar]
  8. Brotman Y., Briff E., Viterbo A., Chet I. ( 2008). Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789 [View Article][PubMed]
    [Google Scholar]
  9. Cazalé A. C., Clément M., Chiarenza S., Roncato M. A., Pochon N., Creff A., Marin E., Leonhardt N., Noël L. D. ( 2009). Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. . J Exp Bot 60:2653–2664 [View Article][PubMed]
    [Google Scholar]
  10. Chacón M. R., Rodríguez-Galán O., Benítez T., Sousa S., Rey M., Llobell A., Delgado-Jarana J. ( 2007). Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. . Int Microbiol 10:19–27[PubMed]
    [Google Scholar]
  11. Chang Y. C., Baker R., Kleifeld O., Chet I. ( 1986). Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. . Plant Dis 70:145–148 [View Article]
    [Google Scholar]
  12. Chen L. L., Yang X., Raza W., Li J., Liu Y., Qiu M., Zhang F., Shen Q. ( 2011). Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663 [View Article][PubMed]
    [Google Scholar]
  13. Contreras-Cornejo H. A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J. ( 2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. . Plant Physiol 149:1579–1592 [View Article][PubMed]
    [Google Scholar]
  14. Dana M. M., Pintor-Toro J. A., Cubero B. ( 2006). Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730 [View Article][PubMed]
    [Google Scholar]
  15. de Jonge R., van Esse H. P., Kombrink A., Shinya T., Desaki Y., Bours R., van der Krol S., Shibuya N., Joosten M. H. A. J., Thomma B. P. H. J. ( 2010). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955 [View Article][PubMed]
    [Google Scholar]
  16. De Meyer G., Bigirimana J., Elad Y., Höfte M. ( 1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. . Eur J Plant Pathol 104:279–286 [View Article]
    [Google Scholar]
  17. Distefano G., La Malfa S., Vitale A., Lorito M., Deng Z., Gentile A. ( 2008). Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879 [View Article][PubMed]
    [Google Scholar]
  18. Dixit P., Mukherjee P. K., Sherkhane P. D., Kale S. P., Eapen S. ( 2011). Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater 192:270–276[PubMed]
    [Google Scholar]
  19. Djonović S., Pozo M. J., Dangott L. J., Howell C. R., Kenerley C. M. ( 2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853 [View Article][PubMed]
    [Google Scholar]
  20. Djonovic S., Vargas W. A., Kolomiets M. V., Horndeski M., Wiest A., Kenerley C. M. ( 2007). A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889 [View Article][PubMed]
    [Google Scholar]
  21. Donoso E. P., Bustamante R. O., Carú M., Niemeyer H. M. ( 2008). Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl Environ Microbiol 74:1412–1417 [View Article][PubMed]
    [Google Scholar]
  22. Druzhinina I. S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B. A., Kenerley C. M., Monte E., Mukherjee P. K., Zeilinger S., Grigoriev I. V., Kubicek C. P. ( 2011). Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759 [View Article][PubMed]
    [Google Scholar]
  23. Emani C., García J. M., Lopata-Finch E., Pozo M. J., Uribe P., Kim D. J., Sunilkumar G., Cook D. R., Kenerley C. M., Rathore K. S. ( 2003). Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. . Plant Biotechnol J 1:321–336 [View Article][PubMed]
    [Google Scholar]
  24. Engelberth J., Koch T., Schüler G., Bachmann N., Rechtenbach J., Boland W. ( 2001). Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377 [View Article][PubMed]
    [Google Scholar]
  25. Faize M., Malnoy M., Dupuis F., Chevalier M., Parisi L., Chevreau E. ( 2003). Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504 [View Article][PubMed]
    [Google Scholar]
  26. Gallou A., Cranenbrouck S., Declerck S. ( 2009). Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. . Eur J Plant Pathol 124:219–230 [View Article]
    [Google Scholar]
  27. Gentile A., Deng Z., La Malfa S., Distefano G., Domina F., Vitale A., Polizzi G., Lorito M., Tribulato E. ( 2007). Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126:146–151 [View Article]
    [Google Scholar]
  28. Gravel V., Antoun V., Tweddell R. J. ( 2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indoleacetic acid (IAA). Soil Biol Biochem 39:1968–1977 [View Article]
    [Google Scholar]
  29. Harman G. E. ( 2000). Myths and dogmas of biocontrol – changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393 [View Article]
    [Google Scholar]
  30. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M. ( 2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56 [View Article][PubMed]
    [Google Scholar]
  31. Hermosa R., Botella L., Keck E., Jiménez J. A., Montero-Barrientos M., Arbona V., Gómez-Cadenas A., Monte E., Nicolás C. ( 2011). The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302 [View Article][PubMed]
    [Google Scholar]
  32. Korolev N., Rav David D., Elad Y. ( 2008). The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. . BioControl 53:667–683 [View Article]
    [Google Scholar]
  33. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A. & other authors ( 2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma . Genome Biol 12:R40 [View Article][PubMed]
    [Google Scholar]
  34. Kumar V., Parkhi V., Kenerley C. M., Rathore K. S. ( 2009). Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. . Planta 230:277–291 [View Article][PubMed]
    [Google Scholar]
  35. Liu M., Sun Z. X., Zhu J., Xu T., Harman G. E., Lorito M. ( 2004). Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. . J Zhejiang Univ Sci 5:133–136 [View Article][PubMed]
    [Google Scholar]
  36. Lorito M., Woo S. L., García I., Colucci G., Harman G. E., Pintor-Toro J. A., Filippone E., Muccifora S., Lawrence C. B. & other authors ( 1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 95:7860–7865 [View Article][PubMed]
    [Google Scholar]
  37. Lorito M., Woo S. L., Harman G. E., Monte E. ( 2010). Translational research on Trichoderma: from ’omics to the field. Annu Rev Phytopathol 48:395–417 [View Article][PubMed]
    [Google Scholar]
  38. Luo Y., Zhang D. D., Dong X. W., Zhao P. B., Chen L. L., Song X. Y., Wang X. J., Chen X. L., Shi M., Zhang Y. Z. ( 2010). Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126 [View Article][PubMed]
    [Google Scholar]
  39. Martínez C., Blanc F., Le Claire E., Besnard O., Nicole M., Baccou J. C. ( 2001). Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. . Plant Physiol 127:334–344 [View Article][PubMed]
    [Google Scholar]
  40. Mastouri F., Björkman T., Harman G. E. ( 2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221 [View Article][PubMed]
    [Google Scholar]
  41. Masunaka A., Hyakumachi M., Takenaka S. ( 2011). Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. . Microbes Environ 26:128–134 [View Article][PubMed]
    [Google Scholar]
  42. Montero-Barrientos M., Hermosa R., Cardoza R. E., Gutiérrez S., Nicolás C., Monte E. ( 2010). Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665 [View Article][PubMed]
    [Google Scholar]
  43. Mora A., Earle E. D. ( 2001). Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9 [View Article]
    [Google Scholar]
  44. Morán-Diez E., Hermosa R., Ambrosino P., Cardoza R. E., Gutiérrez S., Lorito M., Monte E. ( 2009). The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031 [View Article][PubMed]
    [Google Scholar]
  45. Pieterse C. M. J., Leon-Reyes A., Van der Ent S., Van Wees S. C. M. ( 2009). Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316 [View Article][PubMed]
    [Google Scholar]
  46. Rotblat B., Enshell-Seijffers D., Gershoni J. M., Schuster S., Avni A. ( 2002). Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–1055 [View Article][PubMed]
    [Google Scholar]
  47. Ruocco M., Lanzuise S., Vinale F., Marra R., Turrà D., Woo S. L., Lorito M. ( 2009). Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22:291–301 [View Article][PubMed]
    [Google Scholar]
  48. Salas-Marina M. A., Silva-Flores M. A., Uresti-Rivera E. E., Castro-Longoria E., Herrera-Estrella A., Casas-Flores S. ( 2011). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26 [View Article]
    [Google Scholar]
  49. Segarra G., Casanova E., Bellido D., Odena M. A., Oliveira E., Trillas I. ( 2007). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952 [View Article][PubMed]
    [Google Scholar]
  50. Segarra G., Van der Ent S., Trillas I., Pieterse C. M. J. ( 2009). MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol (Stuttg) 11:90–96 [View Article][PubMed]
    [Google Scholar]
  51. Seidl V., Marchetti M., Schandl R., Allmaier G., Kubicek C. P. ( 2006). Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359 [View Article][PubMed]
    [Google Scholar]
  52. Shah J. M., Raghupathy V., Veluthambi K. ( 2009). Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. . Biotechnol Lett 31:239–244 [View Article][PubMed]
    [Google Scholar]
  53. Shoresh M., Yedidia I., Chet I. ( 2005). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84 [View Article][PubMed]
    [Google Scholar]
  54. Shoresh M., Harman G. E., Mastouri F. ( 2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43 [View Article][PubMed]
    [Google Scholar]
  55. Stepanova A. N., Yun J., Likhacheva A. V., Alonso J. M. ( 2007). Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185 [View Article][PubMed]
    [Google Scholar]
  56. Stergiopoulos I., de Wit P. J. ( 2009). Fungal effector proteins. Annu Rev Phytopathol 47:233–263 [View Article][PubMed]
    [Google Scholar]
  57. Tucci M., Ruocco M., De Masi L., De Palma M., Lorito M. ( 2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354 [View Article][PubMed]
    [Google Scholar]
  58. Vadassery J., Tripathi S., Prasad R., Varma A., Oelmüller R. ( 2009). Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. . J Plant Physiol 166:1263–1274 [View Article][PubMed]
    [Google Scholar]
  59. Van Wees S. C. M., van der Ent S., Pieterse C. M. J. ( 2008). Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448 [View Article]
    [Google Scholar]
  60. Vargas W. A., Djonović S., Sukno S. A., Kenerley C. M. ( 2008). J Biol Chem 283:19804–19815 [CrossRef]
    [Google Scholar]
  61. Vargas W. A., Mandawe J. C., Kenerley C. M. ( 2009). Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808 [View Article][PubMed]
    [Google Scholar]
  62. Vinale F., Sivasithamparam K., Ghisalberti E. L., Marra R., Barbetti M. J., Li H., Woo S. L., Lorito M. ( 2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86 [View Article]
    [Google Scholar]
  63. Viterbo A., Chet I. ( 2006). TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258 [View Article][PubMed]
    [Google Scholar]
  64. Viterbo A., Horwitz B. A. ( 2010). Mycoparasitism. Cellular and Molecular Biology of Filamentous Fungi676–693 Borkovich K. A., Ebbole D. J. Washington: American Society for Microbiology;
    [Google Scholar]
  65. Viterbo A., Wiest A., Brotman Y., Chet I., Kenerley C. ( 2007). The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746 [View Article][PubMed]
    [Google Scholar]
  66. Viterbo A., Landau U., Kim S., Chernin L., Chet I. ( 2010). Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48 [View Article][PubMed]
    [Google Scholar]
  67. Vizcaíno J. A., Cardoza R. E., Hauser M., Hermosa R., Rey M., Llobell A., Becker J. M., Gutiérrez S., Monte E. ( 2006). ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. . Fungal Genet Biol 43:234–246 [View Article][PubMed]
    [Google Scholar]
  68. Yedidia I., Benhamou N., Chet I. ( 1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum . Appl Environ Microbiol 65:1061–1070[PubMed]
    [Google Scholar]
  69. Yedidia I., Srivastva A. K., Kapulnik Y., Chet I. ( 2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242 [View Article]
    [Google Scholar]
  70. Yoshioka Y., Ichikawa H., Naznin H. A., Kogure A., Hyakumachi M. ( 2011). Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci http://dx.doi.org/10.1002/ps.2220 (Epub ahead of print) [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.052274-0
Loading
/content/journal/micro/10.1099/mic.0.052274-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error