Synthetic molecular mimics of naturally occurring cyclopentenones exhibit antifungal activity towards pathogenic fungi Free

Abstract

The naturally occurring reactive electrophilic species 12-oxo-phytodienoic acid (12-oxo-PDA) is a potent antifungal agent, whereas the plant growth regulator jasmonic acid, which is synthesized from 12-oxo-PDA, is ineffective. To address what structural features of the molecule endow it with antifungal activity, we synthesized a series of molecular mimics of 12-oxo-PDA varying in the length of the alkyl chain at its C-4 ring position. The octyl analogue (4-octyl cyclopentenone) was the most effective at suppressing spore germination and subsequent mycelial growth of a range of fungal pathogens and was particularly effective against and , with minimum fungicidal concentrations in the range 100–200 µM. Introduction of a carboxyl group to the end of the chain, mimicking natural fatty acids, markedly reduced antifungal efficacy. Electrolyte leakage, indicative of membrane perturbation, was evident in both and exposed to 4-octyl cyclopentenone. Lipid composition analysis of the fungal spores revealed that those species with a high oil content, namely and , were less sensitive to 4-octyl cyclopentenone. The comparable hydrophobicity of 4-octyl cyclopentenone and 12-oxo-PDA accounts for the similar spore suppression activity of these two compounds. The relative ease of synthesis of 4-octyl cyclopentenone makes it an attractive compound for potential use as an antifungal agent.

Funding
This study was supported by the:
  • Aston University
  • EarthOil Treatt PLC
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052233-0
2011-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3435.html?itemId=/content/journal/micro/10.1099/mic.0.052233-0&mimeType=html&fmt=ahah

References

  1. Adie B. A. T., Pérez-Pérez J., Pérez-Pérez M. M., Godoy M., Sánchez-Serrano J. J., Schmelz E. A., Solano R. ( 2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis . Plant Cell 19:1665–1681 [CrossRef]
    [Google Scholar]
  2. Ainai T., Matsuumi M., Kobayashi Y. ( 2003). Efficient total synthesis of 12-oxo-PDA and OPC-8 : 0. J Org Chem 68:7825–7832 [View Article][PubMed]
    [Google Scholar]
  3. Alméras E., Stolz S., Vollenweider S., Reymond P., Mène-Saffrané L., Farmer E. E. ( 2003). Reactive electrophile species activate defense gene expression in Arabidopsis . Plant J 34:205–216 [View Article][PubMed]
    [Google Scholar]
  4. Andreou A., Feussner I. ( 2009). Lipoxygenases – structure and reaction mechanism. Phytochemistry 70:1504–1510 [View Article][PubMed]
    [Google Scholar]
  5. Avis T. J., Bélanger R. R. ( 2001). Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa . Appl Environ Microbiol 67:956–960 [View Article][PubMed]
    [Google Scholar]
  6. Farmer E. E., Davoine C. ( 2007). Reactive electrophile species. Curr Opin Plant Biol 10:380–386 [View Article][PubMed]
    [Google Scholar]
  7. Fujita K., Kubo I. ( 2002). Plasma membrane injury induced by nonyl gallate in Saccharomyces cerevisiae . J Appl Microbiol 92:1035–1042 [View Article][PubMed]
    [Google Scholar]
  8. Griffiths R. G., Dancer J., O’Neill E., Harwood J. L. ( 2003). Lipid composition of Botrytis cinerea and inhibition of its radiolabelling by the fungicide iprodione. New Phytol 160:199–207 [View Article]
    [Google Scholar]
  9. Gurr M. I., Harwood J. L., Frayn K. N. ( 2002). Lipid Biochemistry: an Introduction, 5th edn. Oxford: Wiley-Blackwell; [View Article]
    [Google Scholar]
  10. Hamberg M. ( 1999). An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids 34:1131–1142 [View Article][PubMed]
    [Google Scholar]
  11. Hamberg M., Sanz A., Rodriguez M. J., Calvo A. P., Castresana C. ( 2003). Activation of the fatty acid α-dioxygenase pathway during bacterial infection of tobacco leaves. Formation of oxylipins protecting against cell death. J Biol Chem 278:51796–51805 [CrossRef]
    [Google Scholar]
  12. Harborne J. B. ( 1999). The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27:335–367 [View Article]
    [Google Scholar]
  13. Harwood J. L., Russell N. J. ( 1984). Lipids in Plants and Microbes Boston: Unwin Hyman; [CrossRef]
    [Google Scholar]
  14. Herrero-Garcia E., Garzia A., Cordobés S., Espeso E. A., Ugalde U. ( 2011). 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans . Fungal Biol 115:393–400 [CrossRef]
    [Google Scholar]
  15. Ito M., Matsuumi M., Murugesh M. G., Kobayashi Y. ( 2001). Scope and limitation of organocuprates, and copper or nickel catalyst-modified Grignard reagents for installation of an alkyl group onto cis-4-cyclopentene-1,3-diol monoacetate. J Org Chem 66:5881–5889 [View Article][PubMed]
    [Google Scholar]
  16. Jackson F. M., Michaelson L., Fraser T. C. M., Stobart A. K., Griffiths G. ( 1998). Biosynthesis of triacylglycerol in the filamentous fungus Mucor circinelloides . Microbiology 144:2639–2645 [View Article][PubMed]
    [Google Scholar]
  17. Kobayashi Y., Matsuumi M. ( 2002). Controlled syntheses of 12-oxo-PDA and its 13-epimer. Tetrahedron Lett 43:4361–4364 [View Article]
    [Google Scholar]
  18. Kubo I., Fujita K. I., Kubo A., Nihei K. I., Lunde C. S. ( 2003). Modes of antifungal action of (2E)-alkenals against Saccharomyces cerevisiae . J Agric Food Chem 51:3951–3957 [View Article][PubMed]
    [Google Scholar]
  19. Laudert D., Weiler E. W. ( 1998). Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J 15:675–684 [View Article][PubMed]
    [Google Scholar]
  20. León J., Royo J., Vancanneyt G., Sanz C., Silkowski H., Griffiths G., Sánchez-Serrano J. J. ( 2002). Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. J Biol Chem 277:416–423 [View Article][PubMed]
    [Google Scholar]
  21. Leverentz M. K., Wagstaff C., Rogers H. J., Stead A. D., Chanasut U., Silkowski H., Thomas B., Weichert H., Feussner I., Griffiths G. ( 2002). Characterization of a novel lipoxygenase-independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol 130:273–283 [View Article][PubMed]
    [Google Scholar]
  22. Li C. Y., Schilmiller A. L., Liu G. H., Lee G. I., Jayanty S., Sageman C., Vrebalov J., Giovannoni J. J., Yagi K. et al. & other authors ( 2005). Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986 [View Article][PubMed]
    [Google Scholar]
  23. Mosblech A., Feussner I., Heilmann I. ( 2009). Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517 [View Article][PubMed]
    [Google Scholar]
  24. Mueller M. J., Berger S. ( 2009). Reactive electrophilic oxylipins: pattern recognition and signalling. Phytochemistry 70:1511–1521 [View Article][PubMed]
    [Google Scholar]
  25. Mueller S., Hilbert B., Dueckershoff K., Roitsch T., Krischke M., Mueller M. J., Berger S. ( 2008). General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis . Plant Cell 20:768–785 [CrossRef]
    [Google Scholar]
  26. Myung K., Hamilton-Kemp T. R., Archbold D. D. ( 2007). Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes. J Agric Food Chem 55:2182–2188 [View Article][PubMed]
    [Google Scholar]
  27. Prost I., Dhondt S., Rothe G., Vicente J., Rodriguez M. J., Kift N., Carbonne F., Griffiths G., Esquerré-Tugayé M. T. et al. & other authors ( 2005). Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913 [View Article][PubMed]
    [Google Scholar]
  28. Schaller A., Stintzi A. ( 2009). Enzymes in jasmonate biosynthesis – structure, function, regulation. Phytochemistry 70:1532–1538 [View Article][PubMed]
    [Google Scholar]
  29. Shah J. ( 2005). Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260 [View Article][PubMed]
    [Google Scholar]
  30. Stenzel I., Hause B., Miersch O., Kurz T., Maucher H., Weichert H., Ziegler J., Feussner I., Wasternack C. ( 2003). Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana . Plant Mol Biol 51:895–911 [CrossRef]
    [Google Scholar]
  31. Taki N., Sasaki-Sekimoto Y., Obayashi T., Kikuta A., Kobayashi K., Ainai T., Yagi K., Sakurai N., Suzuki H. et al. & other authors ( 2005). 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis . Plant Physiol 139:1268–1283 [View Article][PubMed]
    [Google Scholar]
  32. Vollenweider S., Weber H., Stolz S., Chételat A., Farmer E. E. ( 2000). Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24:467–476 [CrossRef]
    [Google Scholar]
  33. Wasternack C. ( 2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681–697 [View Article][PubMed]
    [Google Scholar]
  34. Weber H. ( 2002). Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052233-0
Loading
/content/journal/micro/10.1099/mic.0.052233-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed