1887

Abstract

The naturally occurring reactive electrophilic species 12-oxo-phytodienoic acid (12-oxo-PDA) is a potent antifungal agent, whereas the plant growth regulator jasmonic acid, which is synthesized from 12-oxo-PDA, is ineffective. To address what structural features of the molecule endow it with antifungal activity, we synthesized a series of molecular mimics of 12-oxo-PDA varying in the length of the alkyl chain at its C-4 ring position. The octyl analogue (4-octyl cyclopentenone) was the most effective at suppressing spore germination and subsequent mycelial growth of a range of fungal pathogens and was particularly effective against and , with minimum fungicidal concentrations in the range 100–200 µM. Introduction of a carboxyl group to the end of the chain, mimicking natural fatty acids, markedly reduced antifungal efficacy. Electrolyte leakage, indicative of membrane perturbation, was evident in both and exposed to 4-octyl cyclopentenone. Lipid composition analysis of the fungal spores revealed that those species with a high oil content, namely and , were less sensitive to 4-octyl cyclopentenone. The comparable hydrophobicity of 4-octyl cyclopentenone and 12-oxo-PDA accounts for the similar spore suppression activity of these two compounds. The relative ease of synthesis of 4-octyl cyclopentenone makes it an attractive compound for potential use as an antifungal agent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052233-0
2011-12-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3435.html?itemId=/content/journal/micro/10.1099/mic.0.052233-0&mimeType=html&fmt=ahah

References

  1. Adie B. A. T., Pérez-Pérez J., Pérez-Pérez M. M., Godoy M., Sánchez-Serrano J. J., Schmelz E. A., Solano R.. ( 2007;). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis . Plant Cell19:1665–1681[CrossRef]
    [Google Scholar]
  2. Ainai T., Matsuumi M., Kobayashi Y.. ( 2003;). Efficient total synthesis of 12-oxo-PDA and OPC-8 : 0. J Org Chem68:7825–7832 [CrossRef][PubMed]
    [Google Scholar]
  3. Alméras E., Stolz S., Vollenweider S., Reymond P., Mène-Saffrané L., Farmer E. E.. ( 2003;). Reactive electrophile species activate defense gene expression in Arabidopsis . Plant J34:205–216 [CrossRef][PubMed]
    [Google Scholar]
  4. Andreou A., Feussner I.. ( 2009;). Lipoxygenases – structure and reaction mechanism. Phytochemistry70:1504–1510 [CrossRef][PubMed]
    [Google Scholar]
  5. Avis T. J., Bélanger R. R.. ( 2001;). Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa . Appl Environ Microbiol67:956–960 [CrossRef][PubMed]
    [Google Scholar]
  6. Farmer E. E., Davoine C.. ( 2007;). Reactive electrophile species. Curr Opin Plant Biol10:380–386 [CrossRef][PubMed]
    [Google Scholar]
  7. Fujita K., Kubo I.. ( 2002;). Plasma membrane injury induced by nonyl gallate in Saccharomyces cerevisiae . J Appl Microbiol92:1035–1042 [CrossRef][PubMed]
    [Google Scholar]
  8. Griffiths R. G., Dancer J., O’Neill E., Harwood J. L.. ( 2003;). Lipid composition of Botrytis cinerea and inhibition of its radiolabelling by the fungicide iprodione. New Phytol160:199–207 [CrossRef]
    [Google Scholar]
  9. Gurr M. I., Harwood J. L., Frayn K. N.. ( 2002;). Lipid Biochemistry: an Introduction, 5th edn. Oxford: Wiley-Blackwell; [CrossRef]
    [Google Scholar]
  10. Hamberg M.. ( 1999;). An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids34:1131–1142 [CrossRef][PubMed]
    [Google Scholar]
  11. Hamberg M., Sanz A., Rodriguez M. J., Calvo A. P., Castresana C.. ( 2003;). Activation of the fatty acid α-dioxygenase pathway during bacterial infection of tobacco leaves. Formation of oxylipins protecting against cell death. J Biol Chem278:51796–51805[CrossRef]
    [Google Scholar]
  12. Harborne J. B.. ( 1999;). The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol27:335–367 [CrossRef]
    [Google Scholar]
  13. Harwood J. L., Russell N. J.. ( 1984;). Lipids in Plants and Microbes Boston: Unwin Hyman;[CrossRef]
    [Google Scholar]
  14. Herrero-Garcia E., Garzia A., Cordobés S., Espeso E. A., Ugalde U.. ( 2011;). 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans . Fungal Biol115:393–400[CrossRef]
    [Google Scholar]
  15. Ito M., Matsuumi M., Murugesh M. G., Kobayashi Y.. ( 2001;). Scope and limitation of organocuprates, and copper or nickel catalyst-modified Grignard reagents for installation of an alkyl group onto cis-4-cyclopentene-1,3-diol monoacetate. J Org Chem66:5881–5889 [CrossRef][PubMed]
    [Google Scholar]
  16. Jackson F. M., Michaelson L., Fraser T. C. M., Stobart A. K., Griffiths G.. ( 1998;). Biosynthesis of triacylglycerol in the filamentous fungus Mucor circinelloides . Microbiology144:2639–2645 [CrossRef][PubMed]
    [Google Scholar]
  17. Kobayashi Y., Matsuumi M.. ( 2002;). Controlled syntheses of 12-oxo-PDA and its 13-epimer. Tetrahedron Lett43:4361–4364 [CrossRef]
    [Google Scholar]
  18. Kubo I., Fujita K. I., Kubo A., Nihei K. I., Lunde C. S.. ( 2003;). Modes of antifungal action of (2E)-alkenals against Saccharomyces cerevisiae . J Agric Food Chem51:3951–3957 [CrossRef][PubMed]
    [Google Scholar]
  19. Laudert D., Weiler E. W.. ( 1998;). Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J15:675–684 [CrossRef][PubMed]
    [Google Scholar]
  20. León J., Royo J., Vancanneyt G., Sanz C., Silkowski H., Griffiths G., Sánchez-Serrano J. J.. ( 2002;). Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. J Biol Chem277:416–423 [CrossRef][PubMed]
    [Google Scholar]
  21. Leverentz M. K., Wagstaff C., Rogers H. J., Stead A. D., Chanasut U., Silkowski H., Thomas B., Weichert H., Feussner I., Griffiths G.. ( 2002;). Characterization of a novel lipoxygenase-independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol130:273–283 [CrossRef][PubMed]
    [Google Scholar]
  22. Li C. Y., Schilmiller A. L., Liu G. H., Lee G. I., Jayanty S., Sageman C., Vrebalov J., Giovannoni J. J., Yagi K. et al. & other authors ( 2005;). Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell17:971–986 [CrossRef][PubMed]
    [Google Scholar]
  23. Mosblech A., Feussner I., Heilmann I.. ( 2009;). Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem47:511–517 [CrossRef][PubMed]
    [Google Scholar]
  24. Mueller M. J., Berger S.. ( 2009;). Reactive electrophilic oxylipins: pattern recognition and signalling. Phytochemistry70:1511–1521 [CrossRef][PubMed]
    [Google Scholar]
  25. Mueller S., Hilbert B., Dueckershoff K., Roitsch T., Krischke M., Mueller M. J., Berger S.. ( 2008;). General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis . Plant Cell20:768–785[CrossRef]
    [Google Scholar]
  26. Myung K., Hamilton-Kemp T. R., Archbold D. D.. ( 2007;). Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes. J Agric Food Chem55:2182–2188 [CrossRef][PubMed]
    [Google Scholar]
  27. Prost I., Dhondt S., Rothe G., Vicente J., Rodriguez M. J., Kift N., Carbonne F., Griffiths G., Esquerré-Tugayé M. T. et al. & other authors ( 2005;). Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol139:1902–1913 [CrossRef][PubMed]
    [Google Scholar]
  28. Schaller A., Stintzi A.. ( 2009;). Enzymes in jasmonate biosynthesis – structure, function, regulation. Phytochemistry70:1532–1538 [CrossRef][PubMed]
    [Google Scholar]
  29. Shah J.. ( 2005;). Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol43:229–260 [CrossRef][PubMed]
    [Google Scholar]
  30. Stenzel I., Hause B., Miersch O., Kurz T., Maucher H., Weichert H., Ziegler J., Feussner I., Wasternack C.. ( 2003;). Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana . Plant Mol Biol51:895–911[CrossRef]
    [Google Scholar]
  31. Taki N., Sasaki-Sekimoto Y., Obayashi T., Kikuta A., Kobayashi K., Ainai T., Yagi K., Sakurai N., Suzuki H. et al. & other authors ( 2005;). 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis . Plant Physiol139:1268–1283 [CrossRef][PubMed]
    [Google Scholar]
  32. Vollenweider S., Weber H., Stolz S., Chételat A., Farmer E. E.. ( 2000;). Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J24:467–476[CrossRef]
    [Google Scholar]
  33. Wasternack C.. ( 2007;). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond)100:681–697 [CrossRef][PubMed]
    [Google Scholar]
  34. Weber H.. ( 2002;). Fatty acid-derived signals in plants. Trends Plant Sci7:217–224 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052233-0
Loading
/content/journal/micro/10.1099/mic.0.052233-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error