1887

Abstract

Micro-organisms react to a rapid temperature downshift by triggering a physiological response to ensure survival in unfavourable conditions. Adaptation includes changes in membrane composition and in the translation and transcription machineries. The cold shock response leads to a growth block and overall repression of translation; however, there is the induction of a set of specific proteins that help to tune cell metabolism and readjust it to the new conditions. For a mesophile like , the adaptation process takes about 4 h. Although the bacterial cold shock response was discovered over two decades ago we are still far from understanding this process. In this review, we aim to describe current knowledge, focusing on the functions of RNA-interacting proteins and RNases involved in cold shock adaptation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052209-0
2013-12-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2437.html?itemId=/content/journal/micro/10.1099/mic.0.052209-0&mimeType=html&fmt=ahah

References

  1. Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., de Mendoza D.( 2001). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis.. EMBO J 20:1681–1691 [View Article][PubMed]
    [Google Scholar]
  2. Albanesi D., Mansilla M. C., de Mendoza D.( 2004). The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol 186:2655–2663 [View Article][PubMed]
    [Google Scholar]
  3. Andrade J. M., Pobre V., Silva I. J., Domingues S., Arraiano C. M.( 2009). The role of 3′–5′ exoribonucleases in RNA degradation. Prog Mol Biol Transl Sci 85:187–229 [View Article][PubMed]
    [Google Scholar]
  4. Awano N., Xu C., Ke H., Inoue K., Inouye M., Phadtare S.( 2007). Complementation analysis of the cold-sensitive phenotype of the Escherichia coli csdA deletion strain. J Bacteriol 189:5808–5815 [View Article][PubMed]
    [Google Scholar]
  5. Awano N., Inouye M., Phadtare S.( 2008). RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II. J Bacteriol 190:5924–5933 [View Article][PubMed]
    [Google Scholar]
  6. Awano N., Rajagopal V., Arbing M., Patel S., Hunt J., Inouye M., Phadtare S.( 2010). Escherichia coli RNase R has dual activities, helicase and RNase. J Bacteriol 192:1344–1352 [View Article][PubMed]
    [Google Scholar]
  7. Bae W., Xia B., Inouye M., Severinov K.( 2000). Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci U S A 97:7784–7789 [View Article][PubMed]
    [Google Scholar]
  8. Cairrão F., Cruz A., Mori H., Arraiano C. M.( 2003). Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 50:1349–1360 [View Article][PubMed]
    [Google Scholar]
  9. Caldas T., Laalami S., Richarme G.( 2000). Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:855–860 [View Article][PubMed]
    [Google Scholar]
  10. Cao-Hoang L., Dumont F., Marechal P. A., Gervais P.( 2010). Inactivation of Escherichia coli and Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage. Arch Microbiol 192:299–305 [View Article][PubMed]
    [Google Scholar]
  11. Carty S. M., Sreekumar K. R., Raetz C. R.( 1999). Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12 °C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 274:9677–9685 [View Article][PubMed]
    [Google Scholar]
  12. Chaikam V., Karlson D. T.( 2010). Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep 43:1–8 [View Article][PubMed]
    [Google Scholar]
  13. Charollais J., Dreyfus M., Iost I.( 2004). CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32:2751–2759 [View Article][PubMed]
    [Google Scholar]
  14. Dammel C. S., Noller H. F.( 1995). Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637 [View Article][PubMed]
    [Google Scholar]
  15. Derzelle S., Hallet B., Ferain T., Delcour J., Hols P.( 2003). Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl Environ Microbiol 69:4285–4290 [View Article][PubMed]
    [Google Scholar]
  16. Di Pietro F., Brandi A., Dzeladini N., Fabbretti A., Carzaniga T., Piersimoni L., Pon C. L., Giuliodori A. M.( 2013). Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli.. Microbiologyopen 2:293–307 [View Article][PubMed]
    [Google Scholar]
  17. Fang L., Jiang W., Bae W., Inouye M.( 1997). Promoter-independent cold-shock induction of cspA and its derepression at 37 °C by mRNA stabilization. Mol Microbiol 23:355–364 [View Article][PubMed]
    [Google Scholar]
  18. Feng Y., Huang H., Liao J., Cohen S. N.( 2001). Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 276:31651–31656 [View Article][PubMed]
    [Google Scholar]
  19. Giangrossi M., Giuliodori A. M., Gualerzi C. O., Pon C. L.( 2002). Selective expression of the betasubunit of nucleoid-associated protein HU during cold shock in Escherichia coli. Mol Microbiol 44:205–216 [View Article][PubMed]
    [Google Scholar]
  20. Giuliodori A. M., Brandi A., Gualerzi C. O., Pon C. L.( 2004). Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10:265–276 [View Article][PubMed]
    [Google Scholar]
  21. Giuliodori A. M., Di Pietro F., Marzi S., Masquida B., Wagner R., Romby P., Gualerzi C. O., Pon C. L.( 2010). The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37:21–33 [View Article][PubMed]
    [Google Scholar]
  22. Goldenberg D., Azar I., Oppenheim A. B., Brandi A., Pon C. L., Gualerzi C. O.( 1997). Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol Gen Genet 256:282–290 [View Article][PubMed]
    [Google Scholar]
  23. Goldstein J., Pollitt N. S., Inouye M.( 1990). Major cold shock protein of Escherichia coli.. Proc Natl Acad Sci U S A 87:283–287 [View Article][PubMed]
    [Google Scholar]
  24. Goverde R. L. J., Huis in’t Veld J. H. J., Kusters J. G., Mooi F. R.( 1998). The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5 °C). Mol Microbiol 28:555–569 [View Article][PubMed]
    [Google Scholar]
  25. Graumann P., Schröder K., Schmid R., Marahiel M. A.( 1996). Cold shock stress-induced proteins in Bacillus subtilis.. J Bacteriol 178:4611–4619[PubMed]
    [Google Scholar]
  26. Gualerzi C. O., Giuliodori A. M., Pon C. L.( 2003). Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527–539 [View Article][PubMed]
    [Google Scholar]
  27. Horn G., Hofweber R., Kremer W., Kalbitzer H. R.( 2007). Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470 [View Article][PubMed]
    [Google Scholar]
  28. Hu K. H., Liu E., Dean K., Gingras M., DeGraff W., Trun N. J.( 1996). Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli.. Genetics 143:1521–1532[PubMed]
    [Google Scholar]
  29. Jones P. G., Mitta M., Kim Y., Jiang W., Inouye M.( 1996). Cold shock induces a major ribosomalassociated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci USA 93:76–80 [View Article][PubMed]
    [Google Scholar]
  30. Kandror O., Goldberg A. L.( 1997). Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A 94:4978–4981 [View Article][PubMed]
    [Google Scholar]
  31. Kandror O., DeLeon A., Goldberg A. L.( 2002). Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732 [View Article][PubMed]
    [Google Scholar]
  32. Khemici V., Toesca I., Poljak L., Vanzo N. F., Carpousis A. J.( 2004). The RNase E of Escherichia coli has at least two binding sites for DEAD-box RNA helicases: functional replacement of RhlB by RhlE. Mol Microbiol 54:1422–1430 [View Article][PubMed]
    [Google Scholar]
  33. Lelivelt M. J., Kawula T. H.( 1995). Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907[PubMed]
    [Google Scholar]
  34. López-García P., Forterre P.( 2000). DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. Bioessays 22:738–746 [View Article][PubMed]
    [Google Scholar]
  35. Matos R. G., Barbas A., Arraiano C. M.( 2009). RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Biochem J 423:291–301 [View Article][PubMed]
    [Google Scholar]
  36. Mitta M., Fang L., Inouye M.( 1997). Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335 [View Article][PubMed]
    [Google Scholar]
  37. Mizushima T., Kataoka K., Ogata Y., Inoue R., Sekimizu K.( 1997). Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol 23:381–386 [View Article][PubMed]
    [Google Scholar]
  38. Moll I., Grill S., Gründling A., Bläsi U.( 2002). Effects of ribosomal proteins S1, S2 and the DeaD/ CsdA DEAD-box helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 44:1387–1396 [View Article][PubMed]
    [Google Scholar]
  39. Phadtare S.( 2004). Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136[PubMed]
    [Google Scholar]
  40. Phadtare S.( 2011). Unwinding activity of cold shock proteins and RNA metabolism. RNA Biol 8:394–397 [View Article][PubMed]
    [Google Scholar]
  41. Phadtare S.( 2012). Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNPase and relevance to low-temperature RNA metabolism. Genes Cells 17:850–874 [View Article][PubMed]
    [Google Scholar]
  42. Phadtare S., Inouye M.( 1999). Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli.. Mol Microbiol 33:1004–1014 [View Article][PubMed]
    [Google Scholar]
  43. Polissi A., De Laurentis W., Zangrossi S., Briani F., Longhi V., Pesole G., Dehò G.( 2003). Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res Microbiol 154:573–580 [View Article][PubMed]
    [Google Scholar]
  44. Prakash J. S., Sinetova M., Zorina A., Kupriyanova E., Suzuki I., Murata N., Los D. A.( 2009). DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis.. Mol Biosyst 5:1904–1912 [View Article][PubMed]
    [Google Scholar]
  45. Prud’homme-Généreux A., Beran R. K., Iost I., Ramey C. S., Mackie G. A., Simons R. W.( 2004). Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol Microbiol 54:1409–1421 [View Article][PubMed]
    [Google Scholar]
  46. Qing G., Ma L. C., Khorchid A., Swapna G. V., Mal T. K., Takayama M. M., Xia B., Phadtare S., Ke H.& other authors ( 2004). Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877–882 [View Article][PubMed]
    [Google Scholar]
  47. Schärer K., Stephan R., Tasara T.( 2013). Cold shock proteins contribute to the regulation of listeriolysin O production in Listeria monocytogenes. Foodborne Pathog Dis [View Article][PubMed]
    [Google Scholar]
  48. Vasina J. A., Baneyx F.( 1996). Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter CspA. Appl Environ Microbiol 62:1444–1447[PubMed]
    [Google Scholar]
  49. Vorachek-Warren M. K., Carty S. M., Lin S., Cotter R. J., Raetz C. R.( 2002). An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 °C. J Biol Chem 277:14186–14193 [View Article][PubMed]
    [Google Scholar]
  50. White-Ziegler C. A., Um S., Pérez N. M., Berns A. L., Malhowski A. J., Young S.( 2008). Low temperature (23 °C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166 [View Article][PubMed]
    [Google Scholar]
  51. Yamada M., Nagamitsu H., Izu H., Nakamura K., Azam A.( 2002). Characterization of the ves gene, which is expressed at a low temperature in Escherichia coli. J Mol Microbiol Biotechnol 4:163–169 [View Article][PubMed]
    [Google Scholar]
  52. Yamanaka K., Inouye M.( 2001). Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli.. J Bacteriol 183:2808–2816 [View Article][PubMed]
    [Google Scholar]
  53. Yamanaka K., Fang L., Inouye M.( 1998). The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.052209-0
Loading
/content/journal/micro/10.1099/mic.0.052209-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error